全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于目标出生强度在线估计的多目标跟踪算法

DOI: 10.3724/SP.J.1004.2011.00963, PP. 963-972

Keywords: 多目标跟踪,概率假设密度,目标出生强度,在线估计,极大后验,Dirichlet分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对多目标跟踪中未知的目标出生强度,提出了基于Dirichlet分布的目标出生强度在线估计算法,来改进概率假设密度滤波器在多目标跟踪中的性能.算法采用有限混合模型来描述未知目标出生强度,使用仅依赖于混合权重的负指数Dirichlet分布作为混合模型参数的先验分布.利用拉格朗日乘子法推导了混合权重在极大后验意义下的在线估计公式;混合权重在线估计过程利用了负指数Dirichlet分布的不稳定性,驱使与目标出生数据不相关分量的消亡.以随机近似过程为分量均值和方差的在线估计策略,推导了基于缺失数据的分量均值与方差的在线估计公式.在无法获得初始步出生目标先验分布的约束下,提出了在混合模型上增加均匀分量的初始化方法.以当前时刻的多目标状态估计值为出发点,提出了利用概率假设密度滤波器消弱杂波影响的出生目标数据获取方法.仿真结果表明,提出的目标出生强度在线估计算法改进了概率假设密度滤波器在多目标跟踪中的性能.

References

[1]  Pulford G E. Taxonomy of multiple target tracking methods. IEE Proceedings of Radar, Sonar and Navigation}, 2005, 152(5): 291-304
[2]  Daley D, Vere-jones D. An Introduction to the Theory of Point Processes. Second Edition. New York: Springer-Verlag, 2002
[3]  Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Norwood: Artech House, 2007
[4]  Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245
[5]  Liu W F, Han C Z, Lian F, Zhu H Y. Multitarget state extraction for the PHD filter using MCMC approach. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 864-883
[6]  Pasha S A, Vo B N, Tuan H D, Ma W K. A Gaussian mixture PHD filter for jump Markov system models. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936
[7]  Clark D E, Vo B N. Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212
[8]  Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423
[9]  Vo B T, Vo B N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567
[10]  Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87-98
[11]  Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1441-1453
[12]  Vo B T, Vo B N, Cantoni A. Bayesian filtering with random finite set observations. IEEE Transactions on Signal Processing, 2008, 56(4): 1313-1326
[13]  Wang Y D, Wu J K, Kassim A A, Huang W M. Data-driven probability hypothesis density filter for visual tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1085-1095
[14]  Maggio E, Cavallaro A. Learning scene context for multiple object tracking. IEEE Transactions on Image Processing, 2009, 18(8): 1873-1884
[15]  Clark D, Ristic B, Vo B N, Vo B T. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR. IEEE Transactions on Signal Processing, 2010, 58(1): 26-37
[16]  Mclachlan G, Peel D. Finite Mixture Models}. New York: John Wiley and Sons, 2000 \vskip 5mm
[17]  Figueiredo M A F, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396
[18]  Blackman S, Popoli R. Design and Analysis of Modern Tracking Systems. Norwood: Artech House, 1999
[19]  Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178
[20]  Erdinc O, Willett P, Bar-shalom Y. The bin-occupancy filter and its connection to the PHD filters. IEEE Transactions on Signal Processing, 2009, 57(11): 4232-4246
[21]  Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454
[22]  Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104
[23]  Clark D E, Bell J. Convergence results for the particle PHD filter. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661
[24]  Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543
[25]  Franken D, Schmidt M, Ulmke M. "Spooky action at a distance" in the cardinalized probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1657-1664
[26]  Zhang H J, Jing Z L, Hu S Q. Gaussian mixture CPHD filter with gating technique. Signal Processing, 2009, 89(8): 1521-1530
[27]  Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Multiple-model probability hypothesis density smoother. Acta Automatica Sinica, 2010, 36(7): 939-950 (连峰, 韩崇昭, 刘伟峰, 元向辉. 多模型概率假设密度平滑器. 自动化学报, 2010, 36(7): 939-950)
[28]  Panta K, Clark D, Vo B N. Data association and track management for the Gaussian mixture probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1003-1016
[29]  Rezaeian M, Vo B N. Error bounds for joint detection and estimation of a single object with random finite set observation. IEEE Transactions on Signal Processing, 2010, 58(3): 1493-1506
[30]  Maggio E, Taj M, Cavallaro A. Efficient multitarget visual tracking using random finite sets. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1016-1027
[31]  Clark D, Ruiz I T, Petilot Y, Bell J. Particle PHD filter multiple target tracking in sonar images. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 409-416
[32]  Zhang H J, Jing Z L, Hu S Q. Localization of multiple emitters based on the sequential PHD filter. Signal Processing, 2010, 90(1): 34-43
[33]  Davy M, Tourneret J Y. Generative supervised classification using Dirichlet process priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1781-1794
[34]  Hoffman J R, Mahler R P S. Multitarget miss distance via optimal assignment. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2004, 34(3): 327-336 }

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133