全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于移相加权球面单簇聚类的周期时间序列异常检测

DOI: 10.3724/SP.J.1004.2011.00984, PP. 984-992

Keywords: 移相加权球面单簇聚类,时间序列异常检测,单分类器,从包含噪声的数据中学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对传统的单分类器不适用于周期时间序列的异常检测,提出了一种基于移相加权球面单簇聚类的单分类器PS-WS1M-OCC.通过在聚类过程中增加高效的循环移位操作,解决了时间序列记录之间相似度计算的问题.另一方面,基于时间序列记录的权重分布,提出了新的阈值自适应确定方法,从而使单分类器对训练集包含的异常数据和参数设置不敏感.实验表明,本文提出的单分类器可以用于周期时间序列的异常检测;与传统的单分类器相比,可以成功地从包含异常数据的训练集中进行无监督学习,对训练集包含的异常数据鲁棒,并且对参数不敏感.

References

[1]  Ma J, Perkins S. Online novelty detection on temporal sequences. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2003. 613-618
[2]  Keogh E J, Lonardi S, Chiu B Y. Finding surprising patterns in a time series database in linear time and space. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Alberta, Canada: ACM, 2002. 550-556
[3]  Keogh E J, Lin J, Fu A W, Herle H V. Finding unusual medical time-series subsequences: algorithms and applications. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(3): 429-439
[4]  Wu M R, Ye J P. A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2088-2092
[5]  Jiang M F, Tseng S S, Su C M. Two-phase clustering process for outliers detection. Pattern Recognition Letters, 2001, 22(6-7): 691-700
[6]  Chen Bin, Feng Ai-Min, Chen Song-Can, Li Bin. One-cluster clustering based data description. Chinese Journal of Computers, 2007, 30(8): 1325-1332(陈斌, 冯爱民, 陈松灿, 李斌. 基于单簇聚类的数据描述. 计算机学报, 2007, 30(8): 1325-1332)
[7]  Moody G B. MIT-BIH arrhythmia database directory [Online], available: http://www.physionet.org/physiobank/database/html/mitdbdir/intro.htm, January 31, 2011
[8]  Wei L, Kumar N, Lolla V N, Keogh E J, Lonardi S, Ratanamahatana C. Assumption-free anomaly detection in time series. In: Proceedings of the 17th International Scientific and Statistical Database Management. California, USA: Lawrence Berkeley Laboratory, 2005. 237-240
[9]  Yang J, Wang W, Yu P S. Mining surprising periodic patterns. Data Mining and Knowledge Discovery, 2004, 9(2): 189-216
[10]  Tax D M J. Data description tool-box (dd tools) [Online], available: http://homepage.tudelft.nl/n9d04/dd_tools.html, January 31, 2011
[11]  Cao L J, Lee H P, Chong W K. Modified support vector novelty detector using training data with outliers. Pattern Recognition Letters, 2003, 24(14): 2479-2487
[12]  Hochbaum D S, Shmoys D B. A best possible heuristic for the κ -center problem. Mathematics of Operations Research, 1985, 10(2): 180-184
[13]  Rebbapragada U, Protopapas P, Brodley C E, Alcock C R. Finding anomalous periodic time series. Machine Learning, 2009, 74(3): 281-313

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133