全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于几何结构失真模型的图像质量评价研究

DOI: 10.3724/SP.J.1004.2011.00811, PP. 811-819

Keywords: 图像质量评价,几何结构失真,视觉感知,人眼视觉系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

?客观图像质量评价研究的目的是设计一种和视觉感知保持一致,且适用于各种失真模型的质量评价方法.传统的结构相似度量质量评价方法忽视了自然图像本身的特点,不能很好地评判某些失真类型图像.本文根据人眼视觉系统(Humanvisualsystem,HVS)在感知图像质量过程中的特点,探索自然图像的本征几何结构特征,考虑像素点的方向失真、幅度失真和方差失真,提出了一种新型的基于图像几何结构失真模型的完全参考质量评价方法.在标准数据库上的实验结果表明,本文方法适用于所有失真模型图像数据的质量评价,计算复杂度相对较低,得到的图像客观评价结果和主观评价方法具有更好的一致性,能够很好地反映人眼对图像质量的主观感受.

References

[1]  Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451
[2]  Suresh S, Babu R V, Kim H J. No-reference image quality assessment using modified extreme learning machine classifier. Applied Soft Computing, 2009, 9(2): 541-552
[3]  Bradley A P. A wavelet visible difference predictor. IEEE Transactions on Image Processing, 1999, 8(5): 717-730
[4]  Wang Z, Bovik A C. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117
[5]  Sheikh H R, Bovik A C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, 15(2): 430-444
[6]  Ran X, Farvardin N. A perceptually motivated three-component image model-part I: description of the model. IEEE Transactions on Image Processing, 1995, 4(4): 401-405
[7]  Xu J, Wu F, Liang J, Zhang W. Directional lapped transforms for image coding. IEEE Transactions on Image Processing, 2010, 19(1): 85-97
[8]  Li X, Orchard M T. New edge-directed interpolation. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527
[9]  VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment [Online], available: http://www.its.bldrdoc.gov/ vqeg/projects/frtv_phaseII/, April 24, 2011
[10]  Cheng G, Cheng L. Reduced reference image quality assessment based on dual derivative priors. Electronics Letters, 2009, 45(18): 937-939
[11]  Heeger D J, Teo T C. A model of perceptual image fidelity. In: Proceedings of the IEEE International Conference on Image Processing. Washington D.C., USA: IEEE, 1995. 343-345
[12]  Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612
[13]  Chang J, Alain B, Ostromoukhov V. Structure-aware error diffusion. ACM Transactions on Graphics, 2009, 28(5): 162.1-162.8
[14]  Chandler M, Hemami S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298
[15]  Peyre G, Mallat S. Orthogonal bandelet bases for geometric images approximation. Communications on Pure and Applied Mathematics, 2008, 61(9): 1173-1212
[16]  Yang Chun-Ling, Chen Guan-Hao, Xie Sheng-Li. Gradient information based image quality assessment. Acta Electronica Sinica, 2007, 35(7): 1313-1317(杨春玲, 陈冠豪, 谢胜利. 基于梯度信息的图像质量评判方法的研究. 电子学报, 2007, 35(7): 1313-1317)
[17]  Sheikh H R, Wang Z, Cormack L, Bovik A C. Live image quality assessment database release2 [Online], available: http://live.ece.utexas.edu/research/quality, April 24, 2011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133