全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多尺度压缩感知金字塔的极化干涉SAR图像分类

DOI: 10.3724/SP.J.1004.2011.00820, PP. 820-827

Keywords: 图像处理,合成孔径雷达,图像分类,压缩感知,多尺度金字塔

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出了一种新的基于多尺度压缩感知(Compressedsensing,CS)金字塔的分类方法,用于合成孔径雷达(Syntheticapertureradar,SAR)图像的分类.首先通过原始图像上的小波平滑和特征提取构建多尺度极化干涉特征空间,然后利用压缩感知提取每一个尺度上图像子块的观测域特征并在数据域重建稀疏特征,最后组合多尺度的稀疏特征生成最终用于分类的多尺度金字塔表达.针对稀疏编码和一般金字塔算法的局限性,提出了基于压缩感知和多尺度金字塔的方法,利用观测矩阵降低特征维数的优势的同时,对SAR图像的纹理特征进行不同尺度的分析.在国内首批极化干涉SAR数据上的实验证明了上述算法的有效性.

References

[1]  Maitre H [Author], Sun Hong [Translator]. Synthetic Aperture Radar Image Processing. Beijing: Publishing House of Electronics Industry, 2005(Henri Maitre [著], 孙洪[译]. 合成孔径雷达图像处理. 北京: 电子工业出版社, 2005)
[2]  Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2006. 801-808
[3]  Wang J J, Yang J C, Yu K, Lv F J, Huang T, Gong Y H. Locality-constrained linear coding for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3360-3367
[4]  Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1794-1801
[5]  Shimoni M, Borghys D, Heremans R, Perneel C, Acheroy M. Fusion of PolSAR and PolInSAR data for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(3): 169-180
[6]  Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2005. 524-531
[7]  Lee J S, Grunes M R, Kwok R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. International Journal of Remote Sensing, 1994, 15(11): 2299-2311
[8]  Olshausen B A, Field D J. Sparse coding with an over complete basis set: a strategy employed by V1? Vision Research, 1997, 37(23): 3311-3325
[9]  Aharon M, Elad M, Bruckstein A M. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
[10]  Bottou L. Online learning and stochastic approximations. Online Learning in Neural Networks. Cambridge: Cambridge University Press, 1998. 9-42
[11]  Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 2169-2178
[12]  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
[13]  Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215
[14]  Chang C C, Lin C J. LIBSVM: a library for support vector machines [Online], available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/, February 22, 2011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133