全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种分离低维信号的ICA快速算法

DOI: 10.3724/SP.J.1004.2011.00794, PP. 794-799

Keywords: 独立分量分析,矩阵指数,闭形式

Full-Text   Cite this paper   Add to My Lib

Abstract:

?介绍了一种基于低维反对称矩阵指数的快速独立分量分析算法.由于算法中牵涉到的矩阵指数具有解析闭合形式的表达,因而算法中使用到的矩阵指数以及最优下降方向均可解析地得到.另外,我们纠正了在别的文献中建立的四维反对称矩阵指数表达式中的两个错误.最后,我们用仿真验证了算法.实验结果表明:相比于广为应用的ExtendedInfoMax和FastICA算法,本文算法能得到更佳的分离性能.

References

[1]  Choi S, Cichocki S, Park H M, Lee S Y. Blind source separation and independent component analysis: a review. Neural Information Processing-Letters and Reviews, 2005, 6(1): 1-57
[2]  Tang Ying, Li Jian-Ping. A new algorithm of ICA: using the parameterized orthogonal matrixes of any dimensions. Acta Automatica Sinica, 2008, 34(1): 31-39(in Chinese)
[3]  Ashi H A, Cummings L J, Matthews P C. Comparison of methods for evaluating functions of a matrix exponential. Applied Numerical Mathematics, 2009, 59(3-4): 468-486
[4]  Fiori S. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. Journal of Machine Learning Research, 2005, 6: 743-781
[5]  Nishimori Y, Akaho S. Learning algorithms utilizing quasi-geodesic flows on the stiefel manifold. Neurocomputing, 2005, 67: 106-135
[6]  Gallier J, Xu D. Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. International Journal of Robotics and Automation, 2002, 17(4): 10-20
[7]  Politi T. A formula for the exponential of a real skew-symmetric matrix of order 4. Bit Numerical Mathematics, 2001, 41(4): 842-845
[8]  Xu L. One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics. Neural Computation, 2007, 19(2): 546-569
[9]  Shen H, Kleinsteuber M, Huper K. Local convergence analysis of fastICA and related algorithms. IEEE Transactions on Neural Networks, 2008, 19(6): 1022-1032
[10]  Gloub G H, Loan C F V. Matrix Computation (Third Edition). Baltimore: The John Hopkins University Press, 1996. 341-342
[11]  Xiao Ming, Xie Sheng-Li, Fu Yu-Li. Underdetermined blind source separation algorithm based on normal vector of hyperplane. Acta Automatica Sinica, 2008, 34(2): 142-149(in Chinese)
[12]  Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6): 1129-1159
[13]  Abrudan T E, Eriksson J, Koivunen V. Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 2008, 56(3): 1134-1147
[14]  Fiori S, Tanaka T. An algorithm to compute averages on matrix lie groups. IEEE Transactions on Signal Processing, 2009, 57(12): 4734-4743
[15]  Plumbley M D. Algorithms for nonnegative independent component analysis. IEEE Transactions on Neural Networks, 2003, 14(3): 534-543
[16]  Moakher M. Means and averaging in the group of rotations. SIAM Journal on Matrix Analysis and Applications, 2002, 24(1): 1-16
[17]  Pham D T, Garrat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Transactions on Signal Processing, 1997, 45(7): 1712-1725
[18]  Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 1999, 11(2): 417-441

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133