全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于能量人工神经元模型的自生长、自组织神经网络

DOI: 10.3724/SP.J.1004.2011.00615, PP. 615-622

Keywords: 自组织,生长网络,能量人工神经元,无监督学习,高维空间,

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文结合近年生物学中神经科学的发展,针对神经胶质细胞对生物神经元网络的生长提供能量支持的特性,将神经胶质细胞的能量模型引入到人工神经元的概念模型中,提出了能量人工神经元(Energyartificialneuron,EAN)的概念模型,并给出了数学表述.同时,在能量人工神经元模型的基础上,实现了一种新型自生长、自组织人工神经元网络(EANbasedself-growingandself-organizingneuralnetwork,ESGSONN),ESGSONN将神经元中的能量、网络的熵增量及样本与神经元权值的相似度的竞争作为生长的条件,并对最优生长点中的获胜神经元进行单位步长调整.ESGSONN实现了快速生长、精确的样本数据分布密度保持、死神经元少的特性.本文使用经典的16种动物实验(RitterandKohonen,1989)验证了ESGSONN的正确性,并通过同SOFM、GCS等自组织网络的对比实验验证ESGSONN网络的特性.最后,本文对ESGSONN在高维空间中的本质进行了讨论.

References

[1]  Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69
[2]  Fritzke B. Growing grid --- a self-organizing network with constant neighborhood range and adaption strength. Neural Processing Letters, 1995, 2(5): 9-13
[3]  Choi D I, Park S H. Self-creating and organizing neural networks. IEEE Transactions on Neural Networks, 1994, 5(4): 561-575
[4]  Blackmore J, Miikkulainen R. Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In: Proceedings of the IEEE International Conference on Neural Networks. San Francisco, USA: IEEE, 1993. 450-455
[5]  Alahakoon D, Halgamuge S K, Srinivasan B. Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Transactions on Neural Networks, 2000, 11(3): 601-614
[6]  Shen F, Hasegawa O. An incremental network for on-line unsupervised classification and topology learning. Neural Networks, 2006, 19(1): 90-106
[7]  Shen F, Oqura T, Hasegawa O. An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks, 2007, 20(8): 893-903
[8]  Pfrieger F W, Barres B A. Synaptic efficacy enhanced by glial cells in vitro. Science, 1997, 277(5332): 1684-1687
[9]  Ullian E M, Sapperstein S K, Christopherson K S, Barres B A. Control of synapse number by glia. Science, 2001, 291(5504): 657-661
[10]  Song H, Stevens C F, Gage F H. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002, 417(6884): 39-44
[11]  Deitmer J W. Strategies for metabolic exchange between glial cells and neurons. Respiration Physiology, 2001, 129(1-2): 71-81
[12]  Newman E A. Glial cell inhibition of neurons by release of ATP. The Journal of Neuroscience, 2003, 23(5): 1659-1666
[13]  Bezzi P, Volterra A. A neuron-glia signaling network in the active brain. Current Opinion in Neurobiology, 2001, 11(3): 387-394
[14]  Ritter H, Kohonen T. Self-organizing semantic maps. Biological Cybernetics, 1989, 61(4): 241-254
[15]  Willshaw D J, Von D M C. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1976, 194(1117): 431-445
[16]  Kangas J A, Kohnen T K, Laaksonen J T. Variants of self-organizing maps. IEEE Transactions on Neural Networks, 1990, 1(1): 93-99
[17]  Fritzke B. Growing cell structures --- a self-organizing network for unsupervised and supervised learning. Neural Networks, 1994, 7(9): 1441-1460
[18]  Fritzke B. A growing neural gas network learns topologies. Advances in Neural Information Processing System. Cambridge: The MIT Press, 1995. 625-632
[19]  Martinetz T M, Schultan K J. A ``neural-gas'' network learns topologies. Artificial Neural Networks, 1991, 1: 397-402
[20]  Chow T W S, Wu S. Cell-splitting grid: a self-creating and self-organizing neural network. Neurocomputing, 2004, 57: 373-387
[21]  Shen F. An Algorithm for Incremental Unsupervised Learning and Topology Representation [Ph.D. dissertation], Tokyo Institute of Technology, Japan, 2006
[22]  Shen F, Hasegawa O. An adaptive incremental LBG for vector quantization. Neural Networks, 2006, 19(5): 694-704
[23]  Slezak M, Pfrieger F W, Soltys Z. Synaptic plasticity, astrocytes and morphological homeostasis. Journal of Physiology-Paris, 2006, 99(2-3): 84-91
[24]  Deitmer J W. Glial strategy for metabolic shuttling and neuronal function. BioEssays, 2000, 22(8): 747-752
[25]  Deitmer J W, Brockhaus J, Casel D. Modulation of synaptic activity in Purkinje neurons by ATP. The Cerebellum, 2006, 5(1): 49-54
[26]  McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 1943, 5(4): 115-133

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133