全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于异质信息融合的网络图像半监督学习方法

DOI: 10.3724/SP.J.1004.2012.01923, PP. 1923-1932

Keywords: 网络图像分类,异质信息,局部协同训练,机器学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

?网络图像通常包含文本、颜色和纹理等异质信息.本文提出了一种基于多类异质信息融合的网络图像半监督学习方法---局部协同训练(Localco-training,LCT).该方法在每个视图(对应一类信息)上对每个样本点的邻域构建线性局部模型,利用一组局部模型来表示数据关系;基于信息传播和协同训练对模型进行增量式迭代更新.该算法在协同训练和基于图正则化的方法这两类半监督学习算法间建立了桥梁.局部协同训练算法能够准确地描述样本的复杂分布,并且可以进行高效的增量学习,有利于大规模网络图像的在线学习.在Corel,Pascal和ImageNet数据集上的实验结果表明该方法具有良好的性能.

References

[1]  Wu Y, Chang E Y, Chang K C C, Smith J R. Optimal multimodal fusion for multimedia data analysis. In: Proceedings of the 12th Annual ACM International Conference on Multimedia. New York, USA: ACM, 2004. 572-579
[2]  Zhu X J. Semi-supervised learning literature survey. Computer Sciences TR 1530, University of Wisconsin - Madison, USA, 2008, 1-60
[3]  Zhang M L, Zhou Z H. CoTrade: confident co-training with data editing. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 2011, 41(6): 1612-1626
[4]  Belkin M, Matveeva I, Niyogi P. Regularization and semi-supervised learning on large graphs. In: Proceedings of the 2004 International Conference on Computational Learning Theory. Banff, Canada: ACM, 2004. 624-638
[5]  Goldman S A, Zhou Y. Enhancing supervised learning with unlabeled data. In: Proceedings of the 17th International Conference on Machine Learning. Stanford, USA: ACM, 2000. 327-334
[6]  Sindhwani V, Niyogi P, Belkin M. A co-regularization approach to semi-supervised learning with multiple views. In: Proceedings of the 22nd ICML Workshop on Learning with Multiple Views. Bonn, Germany: ICML, 2005. 321-328
[7]  Kumar A, Rai P, Daumé H III. Co-regularized multi-view spectral clustering. In: Proceedings of the 2011 Advance in Neural Information Processing Systems. Nevada, USA: MIT Press, 2011. 1413-1421
[8]  Hein M, Audibert J Y, von Luxburg U. From graphs to manifolds-weak and strong pointwise consistency of graph Laplacians. In: Proceedings of the 18th Annual Conference on Learning Theory. New York, USA: ACM, 2005. 470-485
[9]  Zhang X, Song Y C, Cao J, Zhang Y D, Li J T. Large scale incremental web video categorization. In: Proceedings of the 1st Workshop on Web-Scale Multimedia Corpus. Beijing, China: ACM, 2009. 33-40
[10]  Chang C C, Lin C J. LIBSVM: a library for support vector machines. [Online], available: http://www.csie.ntu.edu.tw/ cjlin/libsvm, January 1, 2001
[11]  Jiang T, Tan A H. Learning image-text associations. IEEE Transactions Knowledge and Data Engineering, 2009, 21(2): 161-177
[12]  Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison, Wisconsin, USA: ACM, 1998. 92-100
[13]  Yan R, Naphade M. Semi-supervised cross feature learning for semantic concept detection in videos. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 657-663
[14]  Gupta S, Kim J, Grauman K, Mooney R. Watch, listen & learn: co-training on captioned images and videos. Lecture Notes in Computer Science, 2008, 5211: 457-472
[15]  Kumar A, Daumé H III. A co-training approach for multi-view spectral clustering. In: Proceedings of the 2011 International Conference on Machine Learning. Bellevue, Washington, USA: ACM, 2011. 393-400
[16]  Wu M R, Sch?lkopf B. Transductive classification via local learning regularization. In: Proceedings of the 2007 International Conference Artificial Intelligence and Statistics. San Juan, Puerto Rico, 2007. 628-635
[17]  Zhang D, Wang F, Zhang C S, Li T. Multi-view local learning. In: Proceedings of the 23rd National Conference on Artificial Intelligence. Chicago, IL: AAAI, 2008. 752-757
[18]  Guillaumin M, Verbeek J, Schmid C. Multimodal semi-supervised learning for image classification. In: Proceedings of the 2010 International Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 902-909
[19]  Bottou L, Vapnik V. Local learning algorithms. Neural Computation, 1992, 4(6): 888-900
[20]  Lowe D. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[21]  Landauer T K, Foltz P W, Laham D. Introduction to latent semantic analysis. Discourse Processes, 1998, 25: 259-284

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133