全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图割和模糊连接度的交互式舰船红外图像分割方法

DOI: 10.3724/SP.J.1004.2012.01735, PP. 1735-1750

Keywords: 交互式图像分割,图割,模糊连接度,高斯混合模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对舰船红外图像分割中的低对比度、边缘模糊和目标灰度不均匀问题,提出了基于图割和模糊连接度的交互式图像分割方法.交互方式为矩形笔刷,选择目标和背景种子点.分割方法为基于图割的图像分割方法,引入模糊连接度来计算图割的似然能,给出了模糊连接度权重的自动确定方法,提出了基于直方图分解的高斯混合模型(Gaussianmixturemodel,GMM)成分个数和参数估计方法.仿真结果表明,新方法可实现各种复杂环境下舰船红外图像目标的有效分割.

References

[1]  Liu Song-Tao, Yin Fu-Liang. The basic principle and its new advances of image segmentation methods based on graph cuts. Acta Automatica Sinica, 2012, 38(6): 911-922(刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922)
[2]  Rother C, Kologorov V, Blake A. "GrabCut"—— interactive foreground extraction using iterated graph cuts. In: Proceedings of the 2004 ACM SIGGRAPH, Los Angeles, California USA: ACM, 2004. 309-314
[3]  Chittajallu D R, Brunner G, Kurkure U, Yalamanchili R P, Kakadiaris I A. Fuzzy-Cuts: a knowledge-driven graph-based method for medical image segmentation. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 715-722
[4]  Bloch I. Fuzzy spatial relationships for image processing and interpretation: a review. Image and Vision Computing, 2005, 23(2): 89-110
[5]  Yang A Y, Wright J, Ma Y, Sastry S S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225
[6]  McLachlan G, Peel D. Finite Mixture Models. New York: John Wiley and Sons, 2000
[7]  Jiang Peng, Qin Xiao-Lin. Foreground detection based on unsupervised background clustering. Journal of Image and Graphics, 2010, 15(12): 1790-1795(蒋鹏, 秦小麟. 利用背景聚类的快速前景分割算法. 中国图象图形学报, 2010, 15(12): 1790-1795)
[8]  Jain A K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010, 31(8): 651-666
[9]  Chang J H, Fan K C, Chang Y L. Multi-modal gray-level histogram modeling and decomposition. Image and Vision Computing, 2002, 20(3): 203-216
[10]  Mortensen E N, Batrett W A. Interactive segmentation with intelligent scissors. Graphical Models and Image Processing, 1998, 60(5): 349-384
[11]  Adobe Systems Incorp. Adobe Photoshop 7.0 User Guide [Online], available: http://www.4shared.com/office/ X8P_VdS4/Adobe_Photoshop_70_User_Guide.htm, October 12, 2012
[12]  Grady L. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783
[13]  Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 105-112
[14]  Blake A, Rother C, Brown M, Pérez P, Torr P H S. Interactive image segmentation using an adaptive GMMRF model. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 428-441
[15]  Lempitsky V, Kohli P, Rother C, Sharp T. Image segmentation with a bounding box prior. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 277-284
[16]  Das P, Veksler O, Zavadsky V, Boykov Y. Semiautomatic segmentation with compact shape prior. Image and Vision Computing, 2009, 27(1-2): 206-219
[17]  Akira S, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cut. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, FL, USA: IEEE, 2008. 1-4
[18]  Rosenfeld A. Fuzzy digital topology. Information and Control, 1979, 40(1): 76-87
[19]  Udupa J K, Saha P K, Lotufo R A. Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(11): 1485-1500
[20]  Ciesielski K C, Udupa J K, Saha P K, Zhuge Y. Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Computer Vision and Image Understanding, 2007, 107(3): 160-182
[21]  He H, Chen Y Q. Fuzzy aggregated connectedness for image segmentation. Pattern recognition, 2001, 34(12): 2565-2568
[22]  Ciesielski K C, Udupa J K. Affinity functions in fuzzy connectedness based image segmentation I: equivalence of affinities. Computer Vision and Image Understanding, 2010, 114(1): 146-154
[23]  Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137
[24]  Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303-308
[25]  Strandmark P, Kahl F. Parallel and distributed graph cuts by dual decomposition. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2085-2092
[26]  Rao J, Abugharbieh R, Hamarneh G. Adaptive regularization for image segmentation using local image curvature cues. In: Proceedings of the 11th European Conference on Computer Vision. Crete, Greece: Springer, 2010. 651-665
[27]  Ruwwe C, Z?lzer U. Gray cut——object segmentation in IR-images. In: Proceedings of the 2nd International Symposium on Advances in Visual Computing. Lake Tahoe, USA: Springer, 2006. 702-711
[28]  Zuo Jun-Yi, Liang Yan, Zhao Chun-Hui, Pan Quan, Cheng Yong-Mei, Zhang Hong-Cai. Gaussian mixture background model based on entropy image and membership degree image. Journal of Electronics and Information Technology, 2003, 30(8): 1918-1922(左军毅, 梁彦, 赵春晖, 潘泉, 程咏梅, 张洪才. 基于熵图像和隶属度图的高斯混合背景模型. 电子与信息学报, 2003, 30(8): 1918-1922)
[29]  Udupa J K, Samarasekera S. Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graphical Models and Image Processing, 1996, 58(3): 246-261
[30]  Pednekar A S, Kakadiaris I A. Image segmentation based on fuzzy connectedness using dynamic weights. IEEE Transactions on Image Processing, 2006, 15(6): 1555-1562
[31]  Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396
[32]  Zhong C M, Miao D Q, Wang R Z, Zhou X M. DIVFRP: an automatic divisive hierarchical clustering method based on the furthest reference points. Pattern Recognition Letters, 2008, 29(16): 2067-2077
[33]  Yang W X, Cai J F, Zheng J M, Luo J B. User-friendly interactive image segmentation through unified combinatorial user inputs. IEEE Transactions on Image Processing, 2010, 19(9): 2470-2479
[34]  Falc\ ao A X, Udupa J K, Samanasekera S, Shacma S, Hirsch B E, de Lotufo R A. User-steered image segmentation paradigms: live wire and live lane. Graphical Models and Image Processing, 1998, 60(4): 233-260
[35]  Kass M, Tkin A, Terzolpoulos D. Snakes: active contour models. International Journal on Computer Vision, 1988, 2(4): 321-331
[36]  Reese L J. Intelligent paint: region-based interactive image segmentation [Master dissertation], Brigham Young University, USA, 1999
[37]  Bai X, Sapiro G. A geodesic framework for fast interactive image and video segmentation and matting. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8
[38]  Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239
[39]  Bioucas-Dias J M, Valadao G. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing, 2007, 16(3): 698-709
[40]  Tang Z, Miao Z J, Wan Y L, Li J. Automatic foreground extraction for images and videos. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 2993-2996
[41]  Rosenfeld A. The fuzzy geometry of image subsets. Pattern Recognition Letters, 1984, 2(5): 311-317
[42]  Udupa J K, Saha P K. Fuzzy connectedness and image segmentation. Proceedings of the IEEE, 2003, 91(10): 1649-1669
[43]  Pan Jian-Jiang, Yang Xun-Nian, Wang Guo-Zhao. An image segmentation and its algorithm based on fuzzy connectedness. Journal of Software, 2005, 16(1): 67-76(潘建江, 杨勋年, 汪国昭. 基于模糊连接度的图像分割及算法. 软件学报, 2005, 16(1): 67-76)
[44]  Ciesielski K C, Udupa J K. Affinity functions in fuzzy connectedness based image segmentation II: defining and recognizing truly novel affinities. Computer Vision and Image Understanding, 2010, 114(1): 155-166
[45]  Toet L. Surveillance Images from TNO Human Factors [Online], available: http://www.imagefusion.org/images/toet1/ AIM7418a.gif, December 23, 2011
[46]  Han S D, Tao W B, Wu X L, Tai X C, Wang T J. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters, 2010, 31(3): 216-225
[47]  Alpert S, Calun M, Brandt A, Basri R. Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315-327

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133