全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于自然图像统计模型的图像合成检测方法

DOI: 10.3724/SP.J.1004.2009.01564, PP. 1564-1567

Keywords: Imagecompositing,generalizedGaussianmodel(GGD),maximum-likelihood(ML),supportvectormachine(SVM),imageforensics

Full-Text   Cite this paper   Add to My Lib

Abstract:

?Nowadays,digitalimagescanbeeasilytamperedduetotheavailabilityofpowerfulimageprocessingsoftware.Asdigitalcamerascontinuetoreplacetheiranalogcounterparts,theimportanceofauthenticatingdigitalimages,identifyingtheirsources,anddetectingforgeriesisincreasing.Blindimageforensicsisusedtoanalyzeanimageinthecompleteabsenceofanydigitalwatermarkorsignature.Imagecompositingisthemostcommonformofdigitaltampering.Assumingthatimagecompositingoperationsaffecttheinherentstatisticsoftheimage,weproposeanimagecompositingdetectionmethodonbasedonastatisticalmodelfornaturalimageinthewavelettransformdomain.ThegeneralizedGaussianmodel(GGD)isemployedtodescribethemarginaldistributionofwaveletcoefficientsofimages,andtheparametersofGGDareobtainedusingmaximum-likelihoodestimator.ThestatisticalfeaturesincludeGGDparameters,predictionerror,mean,variance,skewness,andkurtosisateachwaveletdetailsubband.Then,thesefeaturevectorsareusedtodiscriminatebetweennaturalimagesandcompositeimagesusingsupportvectormachine(SVM).Toevaluatetheperformanceofourproposedmethod,wecarriedouttestsontheColumbiaUncompressedImageSplicingDetectionDatasetandanotheradvanceddataset,andachievedadetectionaccuracyof92%and79%,respectively.Thedetectionperformanceofourmethodisbetterthanthatofthemethodusingcameraresponsefunctiononthesamedataset.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133