Cheng H D, Shan J, Ju W, Guo Y H, Zhang L. Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognition, 2010, 43(1): 299-317
[2]
Moon W K, Shen Y W, Huang C S, Chiang L R, Chang R F. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Ultrasound in Medicine and Biology, 2011, 37(4): 539-548
[3]
Sahiner B, Chan H P, Roubidoux M A, Hadjiiski L M, Helvie M A, Paramagul C, Bailey J, Nees A V, Blane C. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology, 2007, 242(3): 716-724
[4]
Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Inteligence, 1997, 89(1-2): 31-71
[5]
Garcia S, Derrac J, Cano J R, Herrera F. Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 417-435
[6]
Zhu L, Zhao B, Gao Y. Multi-class multi-instance learning for lung cancer image classification based on bag feature selection. In: Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery. Shandong, China: IEEE, 2008. 487-492
[7]
Li J, Xu D, Gao W. Removing label ambiguity in learning-based visual saliency estimation. IEEE Transactions on Image Processing, 2012, 21(4): 1513-1525
[8]
Ding J R, Cheng H D, Ning C P, Huang J H, Zhang Y T. Quantitative measurement for thyroid cancer characterization based on elastography. Journal of Ultrasound in Medicine, 2011, 30(9): 1259-1266
[9]
Wang J, Zucker J D. Solving the multiple-instance problem: a lazy learning approach. In: Proceedings of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2000. 1119-1126
[10]
Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the 2005 IEEE Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 524-531
[11]
Chen D R, Lai H W. Three-dimensional ultrasonography for breast malignancy detection. Expert Opinion on Medical Diagnostics, 2011, 5(3): 253-261
[12]
Garra B S, Krasner B H, Horii S C, Ascher S, Mun S K, Zeman R K. Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis. Ultrasonic Imaging, 1993, 15(4): 267-285
[13]
Ren J C. ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 2012, 26: 144-153
[14]
Wagner R F, Smith S W, Sandrik J M, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Transactions on Sonics and Ultrasonics, 1983, 30(3): 156-163
[15]
Liu B, Cheng H D, Huang J H, Tian J W, Tang X L, Liu J F. Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recognition, 2010, 43(1): 280-298
[16]
Bergeron C, Moore G, Zaretzki J, Breneman C M, Bennett K P. Fast bundle algorithm for multiple-instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(6): 1068-1079
[17]
Zhou Z H, Zhang M L. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems, 2007, 11(2): 155-170
[18]
Zhang Q, Goldman S A. EM-DD: an improved multi-instance learning technique. In: Proceedings of the 2002 Neural Information Processing Systems. Cambridge: MIT Press, 2002, 14: 1073-1080
[19]
Weidmann N, Frank E, Pfahringer B. A two-level learning method for generalized multi-instance problems. In: Proceedings of the 2003 European Conference Machine Learning. Cavtat-Dubrovnik, Croatia. 2003. 468-479