全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

再磨过程泵池液位区间与给矿压力模糊切换控制

DOI: 10.3724/SP.J.1004.2013.00556, PP. 556-564

Keywords: 再磨过程,模糊控制,切换控制,磨矿粒度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?赤铁矿再磨过程泵池液位受到大的随机干扰的影响,造成泵池液位波动大,采用已有的再磨过程泵池液位定值闭环控制方法,必然会造成矿浆泵转速在大范围内频繁变化,从而使给矿压力频繁波动在工艺规定的范围之外,降低了旋流器的分级效率.本文提出了由泵池液位区间控制和给矿压力回路控制组成的模糊切换控制方法,泵池液位区间控制通过对给矿压力设定值保持器和模糊补偿器的切换,将给矿压力设定值控制在所允许的波动范围内;通过给矿压力PI回路控制器跟踪其设定值,从而将泵池液位控制在目标值范围内,并将给矿压力的波动控制在允许的范围内.在国内某大型赤铁矿选矿厂的成功应用,表明采用该方法有效减少了泵池液位和给矿压力的波动,使得再磨过程安全运行,提高了旋流器分级效率.

References

[1]  Li X, McKee D J, Horberry T, Powell M S. The control room operator: the forgotten element in mineral process control. Minerals Engineering, 2011, 24(8): 894-902
[2]  Wei D H, Craig I K. Grinding mill circuits —— a survey of control and economic concerns. International Journal of Mineral Processing, 2009, 90(1-4): 56-66
[3]  Duarte M, Sepúlveda F, Castillo A, Contreras A, Lazcano V, Giméez P, Castelli L. A comparative experimental study of five multivariable control strategies applied to a grinding plant. Powder Technology, 1999, 104(1): 1-28
[4]  Pomerleau A, Hodouin D, Desbiens A, Gagnon é. A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers. Powder Technology, 2000, 108(2-3): 103-115
[5]  Hu Dan, Yu Jun-Qi, Guo Chun-Yan. Study on fuzzy control arithmetic for classification pump-sump pulp level in beneficiation. Metal Mine, 2007, 37(9): 97-100(户丹, 于军琪, 郭春燕. 选矿分级泵池液位的模糊控制算法研究. 金属矿山, 2007, 37(9): 97-100)
[6]  Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515(柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
[7]  Tie Ming, Fan Yu-Shun, Chai Tian-You. Distributed simulation platform for optimizing control of mineral grinding process. Journal of System Simulation, 2008, 20(15): 4000- 4005(铁鸣, 范玉顺, 柴天佑. 磨矿流程优化控制的分布式仿真平台. 系统仿真学报, 2008, 20(15): 4000-4005)
[8]  Fileti A M F, Antunes A J B, Silva F V, Silveira V Jr, Pereira J A F R. Experimental investigations on fuzzy logic for process control. Control Engineering Practice, 2007, 15(9): 1149-1160
[9]  Zheng J M, Zhao S D, Wei S G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Engineering Practice, 2009, 17(12): 1398-1404
[10]  van Vuuren M J J, Aldrich C, Auret L. Detecting changes in the operational states of hydrocyclones. Minerals Engineering, 2011, 24(14): 1532-1544
[11]  Ramasamy M, Narayanan S S, Rao Ch D P. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control, 2005, 15(3): 273-283
[12]  Liang Lei, Li Zhen-Guo. Fuzzy-intelligent control arithmetic for the ore pulp level in mineral separation process. Metal Mine, 2009, 39(7): 103-105, 135 (梁蕾, 李振国. 选矿过程矿浆液位的模糊控制算法研究. 金属矿山, 2009, 39(7): 103-105, 135)
[13]  Chu Yun-Fei, Xu Wen-Li, Wang Jun, Wan Wei-Han. Averaging level control based on switching control. Journal of Tsinghua University (Science and Technology), 2005, 45(1): 107-110(楚云飞, 徐文立, 王峻, 万维汉. 基于切换控制的均匀液位控制. 清华大学学报(自然科学版), 2005, 45(1): 107-110)
[14]  Sanchis R, Romero J A, Martín J M. A new approach to averaging level control. Control Engineering Practice, 2011, 19(9): 1037-1043
[15]  Safikhani H, Hajiloo A, Ranjbar M A. Modeling and multi-objective optimization of cyclone separators using CFD and genetic algorithms. Computers and Chemical Engineering, 2011, 35(6): 1064-1071
[16]  Precup R E, Hellendoorn H. A survey on industrial applications of fuzzy control. Computers in Industry, 2011, 62(3): 213-226
[17]  Lequin O, Gevers M, Mossberg M, Bosmans M, Triest L. Iterative feedback tuning of PID parameters: comparison with classical tuning rules. Control Engineering Practice, 2003, 11(9): 1023-1033

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133