全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中立型延时系统不稳定特征根的计算

DOI: 10.3724/SP.J.1004.2013.00081, PP. 81-87

Keywords: 中立型延时系统,特征根,幅角原理,寻根

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出了一种基于幅角原理计算一类中立型延时系统的所有不稳定特征根的算法.通过将右半复平面内的有界矩形区域或半圆形区域连续划分成较小的区域,能够有效地获得所有不稳定特征根的初始近似位置.以这些近似位置作为牛顿法的初始值,可迭代得到所有不稳定特征根的较好近似值.数值算例显示了算法的有效性.

References

[1]  Hale J K, Lunel S M V. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993
[2]  Michiels W, Niculescu S I. Stability and Stabilization of Time-Delay System: An Eigenvalue-Based Approach. Philadephia, PA: SIAM Publications, 2007
[3]  Jarlebring E, Meerbergen K, Michiels W. A Krylov method for the delay eigenvalue problem. SIAM Journal on Scientific Computing, 2010, 32(6): 3278-3300
[4]  Breda D, Maset S, Vermiglio R. TRACE-DDE: A tool for robust analysis and characteristic equations for delay differential equations. Topics in Time-Delay Systems: Analysis, Algorithms and Control. Berlin, Germany: Springer, 2009
[5]  Kravanja P, Barel M V. Computing the zeros of analytic functions. Lecture Notes in Mathematics. New York: Spinger, 2000
[6]  Vyhlidal T. Analysis and Synthesis of Time Delay System Spectrum [Ph.D. dissertation], Department of Mechanical Engineering, Czech Technical University, Czech, 2003
[7]  Vyhlidal T, Zitek P. Mapping the spectrum of a retarded time-delay system utilizing root distribution features. In: Proceedings of the 6th IFAC Workshop on Time-Delay Systems. L'Aquila, Italy: IFAC, 2006
[8]  Hu G D, Liu M Z. Stability criteria of linear neutral systems with multiple delays. IEEE Transactions on Automatic Control, 2007, 52(4): 720-724
[9]  Luzyanina T, Roose D. Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations. Journal of Computational and Applied Mathematics, 1996, 72(2): 379-392
[10]  Yun B I. A derivative free iterative method for finding multiple roots of nonlinear equations. Applied Mathematics Letters, 2009, 22(12): 1859-1863
[11]  Niculescu S I. Delay Effects on Stability: A Robust Control Approach. London, U. K.: Springer-Verlag, 2001
[12]  Verheyden K, Luzyanina T, Roose D. Efficient computation of characteristic roots of delay differential equations using LMS methods. Journal of Computational and Applied Mathematics, 2008, 214(1): 209-226
[13]  Breda D. Solution operator approximations for characteristic roots of delay differential equations. Applied Numerical Mathematics, 2006, 56(3-4): 305-317
[14]  Johnson T, Tucker W. Enclosing all zeros of an analytic function --- a rigorous approach. Journal of Computational and Applied Mathematics, 2009, 228(1): 418-423
[15]  Reese A. A quasi-shrinking rectangle algorithm for complex zeros of a function. Applied Mathematics and Computation, 2007, 185(1): 96-114
[16]  Vyhlidal T, Zitek P. Quasipolynomial mapping based rootfinder for analysis of time delay systems. In: Proceedings of the 4th IFAC Workshop on Time-Delay Systems (TDS'03). Rocquencourt, France: IFAC, 2003. 227-232
[17]  Vyhlidal T, Zitek P. Mapping based algorithm for large-scale computation of quasi-polynomial zeros. IEEE Transactions on Automatic Control, 2009, 54(1): 171-177
[18]  Hu G D. Stability criteria of linear neutral systems with distributed delays. Kybernetika, 2011, 47(2): 273-284
[19]  Li S G, Liao X K, Cheng L Z. A new fourth-order iterative method for finding multiple roots of nonlinear equations. Applied Mathematics and Computation, 2009, 215(3): 1288- 1292

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133