Shotton J, Winn J W, Rother C, Criminisi A. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 2009, 81(1): 2-23
[2]
Tu Z W, Bai X. Auto-context and its application to highlevel vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1744-1757
[3]
Gould S, Rodgers J, Cohen D, Elidan E, Koller D. Multi-class segmentation with relative location prior. International Journal of Computer Vision, 2008, 80(3): 300-316
Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 2008 IEEE Conference on Machine Learning. Helsinki, Finland: IEEE, 2008. 282-289
[6]
Hoiem D, Efros A A, Hebert M. Geometric context from a single image. In: Proceedings of the 2005 IEEE Conference on Computer Vision. Beijing, China: IEEE, 2005. 654-661
[7]
Yang L, Meer P, Foran D J. Multiple class segmentation using a unified framework over mean-shift patches. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[8]
Elkan C. Using the triangle inequality to accelerate k-means. In: Proceedings of the 2003 IEEE Conference on Machine Learning. Washington D.C., USA: IEEE, 2003. 147-153
[9]
Collins M, Schapire R, Singer Y. Logistic regression, adaboost and Bregman distances. Machine Learning, 2002, 48(1-3): 253-285
[10]
Yao B, Yang X, Zhu S C. Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmark. In: Proceedings of the 2009 Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin, Heidelberg: Springer-Verlag, 2007. 169-183
[11]
Gould S, Fulton R, Koller D. Decomposing a scene into geometric and semantically consistent regions. In: Proceedings of the 12th IEEE Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1-8
Galleguillos C, Rabinovich A, Belongie S. Object categorization using co-occurrence, location and appearance. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
[15]
He X M, Zemel R S, Ray D. Learning and incorporating top-down cues in image segmentation. In: Proceedings of the 2006 Europe Conference on Computer Vision. Berlin Heidelberg: Springer, 2006. 338-351
[16]
Medin D L, Schaffer M M. Context theory of classification learning. Psychological Review, 1978, 85(3): 207-238
[17]
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-617