全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于不确定性故障诊断的权重逻辑推理算法研究

DOI: 10.3724/SP.J.1004.2014.02766, PP. 2766-2781

Keywords: 故障诊断,权重逻辑推理,不确定性,多值逻辑,概率推理

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对复杂系统故障诊断建模及推理的复杂性、数据不足、领域知识及监测信息不完备等问题,本文基于动态不确定因果图(Dynamicuncertaincausalitygraph,DUCG)进行权重逻辑推理(Weightedlogicalinference,WLI)及其数理基础的系统化研究.WLI引入绑定权重系数的逻辑事件推理机制,可确保变量状态概率的自动归一性和链式推理的自我依赖性,为多赋值因果关系的简洁、不完备表达提供了解决方案.由于WLI在信息不完全性和命题真值空间的高维性等方面突破了经典数理逻辑,为使其理论基础更为坚实,本文进行了WLI的规范化定义、推理算法补充、运算性质探析,并就理论相容性和自洽性开展了详细论证.算法分析及故障诊断实验结果表明,其高效、准确、较少依赖于参数精确性和数据完备性等特征.

References

[1]  Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
[2]  Larra?aga P, Moral S. Probabilistic graphical models in artificial intelligence. Applied Soft Computing, 2011, 11(2): 1511-1528
[3]  Zhang Q. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases. Journal of Computer Science and Technology, 2012, 27(1): 1-23
[4]  Zhang Q, Dong C L, Cui Y, Yang Z H. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: statistics base, matrix, and application. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 645-663
[5]  Dong C L, Zhang Q, Geng S C. A modeling and probabilistic reasoning method of dynamic uncertain causality graph for industrial fault diagnosis. International Journal of Automation and Computing, 2014, 11(3): 288-298
[6]  Cheng Qiang, Chen Feng, Dong Jian-Wu, Xu Wen-Li. Variational approximate inference methods for graphical models. Acta Automatica Sinica, 2012, 38(11): 1721-1734(程强, 陈峰, 董建武, 徐文立. 概率图模型中的变分近似推理方法. 自动化学报, 2012, 38(11): 1721-1734)
[7]  Yap G E, Tan A H, Pang H H. Explaining inferences in Bayesian networks. Applied Intelligence, 2007, 29(3): 263- 278
[8]  He H C, Wang H, Liu Y H, Wang Y J, Du Y W. Principle of Universal Logics. Beijing: Science Press, 2006.
[9]  He Hua-Can, He Zhi-Tao, Wang Hua. On the second revolution of mathematical logic. CAAL Transactions on Intelligent Systems, 2006, 1(1): 29-37(何华灿, 何智涛, 王华. 论第二次数理逻辑革命. 智能系统学报, 2006, 1(1): 29-37)
[10]  Xu Y, Ruan D, Qin K, Liu J. Lattice-Valued Logic —— An Alternative Approach to Treat Fuzziness and Incomparability. Studies in Fuzziness and Soft Computing. Berlin: Springer, 2003.
[11]  Pfeffer A. Sufficiency, separability and temporal probabilistic models. In: Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 421-428
[12]  Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
[13]  Jensen F V, Nielsen T D. Bayesian Networks and Decision Graphs (2nd Edition). New York: Springer, 2007.
[14]  Pearl J. Causality: Models, Reasoning and Inference (2nd Edition). New York: Cambridge University Press, 2009.
[15]  Dong C L, Wang Y J, Zhang Q, Wang N Y. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo. Computer Methods and Programs in Biomedicine, 2014, 113(1): 162-174
[16]  Yuan C, Lim H, Lu T C. Most relevant explanation in bayesian networks. Journal of Artificial Intelligence Research, 2011, 42: 309-352
[17]  Vomlelová M, Vomlel J. Troubleshooting: NP-hardness and solution methods. Soft Computing —— A Fusion of Foundations, Methodologies and Applications, 2003, 7(5): 357-368
[18]  Novák V. Reasoning about mathematical fuzzy logic and its future. Fuzzy Sets and Systems, 2012, 192: 25-44
[19]  Li Wei. Mathematical Logic: Fundamental Principles and Formal Calculus. Beijing: Science Press, 2008.(李未. 数理逻辑: 基本原理与形式演算. 北京: 科学出版社, 2008.)
[20]  Xu Y, Qin K, Liu J, Song Z. L-valued propositional logic Lvpl. Information Sciences, 1999, 114(1-4): 205-235
[21]  Lai J J, Xu Y. Linguistic truth-valued lattice-valued propositional logic system LP(X) based on linguistic truth-valued lattice implication algebra. Information Sciences, 2010, 180(10): 1990-2002
[22]  Zhou Zhe, Xu Xiao-Bin, Wen Cheng-Lin, Lv Feng. An optimal method for combining conflicting evidences. Acta Automatica Sinica, 2012, 38(6): 976-985(周哲, 徐晓滨, 文成林, 吕锋. 冲突证据融合的优化方法. 自动化学报, 2012, 38(6): 976-985)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133