Torralba A, Fergus R, Freeman W T. 80 million tiny images: a large dataset for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1958-1970
[2]
Fergus R, Li F F, Perona R, Zisserman A. Learning object categories from Google's image search. In: Proceedings of the 10th International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1816-1823
[3]
Le D D, Satoh S. Unsupervised face annotation by mining the Web. In: Proceedings of the 8th IEEE International Conference on Data Mining. Pisa: IEEE, 2008. 383-392
[4]
Berg T L, Forsyth D A. Animals on the web. In: Proceedings of the 2006 IEEE International Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1463-1470
[5]
Yanai K. Generic image classification using visual knowledge on the web. In: Proceedings of the 11th International Conference on Multimedia. New York, USA: ACM, 2003. 167-176
[6]
Zhang H, Berg A C, Maire M, Malik J. SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2126-2136
[7]
Cui J Y, Wen F, Tang X O. Real time Google and live image search re-ranking. In: Proceedings of the 16th International Conference on Multimedia. New York, USA: ACM, 2008. 729-732
[8]
Wang S H, Huang Q M, Jiang S Q, Qin L, Tian Q. Visual ContextRank for web image re-ranking. In: Proceedings of the 1st ACM Workshop on Large-scale Multimedia Retrieval and Mining. New York, USA: ACM, 2009. 121-128
[9]
Jhuo I H, Lee D T. Boosting-based multiple kernel learning for image re-ranking. In: Proceedings of the 18th International Conference on Multimedia. New York, USA: ACM, 2010. 1159-1162
[10]
Liu Y, Mei T, Hua X S. CrowdReranking: exploring multiple search engines for visual search reranking. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2009. 500-507
[11]
Chen X F, Liu X B, Jia Y D. Learning handwritten digit recognition by the max-min posterior pseudo-probabilities method. In: Proceedings of the 9th International Conference on Document Analysis and Recognition. New York, USA: IEEE, 2007. 342-346
[12]
Topi M, Timo O, Matti P, Maricor S. Robust texture classification by subsets of local binary patterns. In: Proceedings of the 15th International Conference of Pattern Recognition. Barcelona: IEEE, 2000. 935-938
[13]
Cheng J, Wang K Q. Active learning for image retrieval with Co-SVM. Pattern Recognition, 2006, 40(1): 330-334
[14]
Li J, Allinson N, Tao D C, Li X L. Multitraining support vector machine for image retrieval. IEEE Transactions on Image Processing, 2006, 15(11): 3597-3601
Vlassis N, Likas A. A kurtosis-based dynamic approach to Gaussian mixture modeling. IEEE Transactions on Systems, Man, and Cybernetics, 1999, 29(4): 393-399
[17]
Hansen M H, Bin Y. Model selection and the principle of minimum description length. Journal of the American Statistical Association, 2001, 96(454): 746-774
[18]
Hoi C H, Lyu M R. Web image learning for searching semantic concepts in image databases. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers and Posters. New York, USA: ACM, 2004. 406-407
[19]
Pereira R, Lopes L S, Silva A. Semantic image search and subset selection for classifier training in object recognition. In: Proceedings of the 14th Portuguese Conference on Artificial Intelligence. Heidelberg, Berlin: Springer, 2009. 338-349
[20]
Fergus R, Perona P, Zisserman A. A visual category filter for Google images. In: Proceedings of the 8th European Conference on Computer Vision. Heidelberg, Berlin: Springer, 2004. 242-256
[21]
Li L J, Li F F. OPTIMOL: automatic online picture collection via incremental model learning. International Journal of Computer Vision, 2010, 88(2): 147-168
[22]
Li H J, Tang J H, Li G D, Chua T S. Word2Image: towards visual interpreting of words. In: Proceedings of the 16th International Conference on Multimedia. New York, USA: ACM, 2008. 813-816
[23]
Morsillo N, Pal C, Nelson R. Semi-supervised learning of visual classifiers from web images and text. In: Proceedings of the 2009 International Joint Conference on Artificial Intelligence. Amsterdam, Netherlands: Elsevier, 2009. 1169-1174
[24]
Schroff F, Criminisi A, Zisserman A. Harvesting image databases from the web. In: Proceedings of the 11th IEEE International Conference on Computer Vision. New York, USA: IEEE, 2007. 2036-2043
[25]
Wang S H, Huang Q M, Jiang S Q, Tian Q. S3MKL: scalable semi-supervised multiple kernel learning for real-world image applications. IEEE Transactions on Multimedia, 2012, 14(4): 1259-1274
[26]
Zhou X S, Huang T S. Relevance feedback in image retrieval: a comprehensive review. Multimedia Systems, 2003, 8(6): 536-544
[27]
Gao Y L, Peng J Y, Luo H Z, Keim D A, Fan J. An interactive approach for filtering out junk images from keyword-based Google search results. IEEE Transaction on Circuits and Systems for Video Technology, 2009, 19(12): 1851-1865
[28]
Zhou W Q, Tian Q, Li H Q. Visual block link analysis for image re-ranking. In: Proceedings of the 1 st International Conference on Internet Multimedia Computing and Service. New York, UAS: ACM, 2009. 10-16
[29]
Zitouni H, Sevil S, Ozkan D, Duygulu P. Re-ranking of web image search results using a graph algorithm. In: Proceedings of the 19th International Conference on Pattern Recognition. New York, USA: IEEE, 2008. 1-4
[30]
Popescu A, Mo?llic P A, Kanellos I, Landais R. Lightweight web image reranking. In: Proceedings of the 17th International Conference on Multimedia. New York, USA: ACM, 2009. 657-660
[31]
Yao T, Mei T, Ngo C W. Co-reranking by mutual reinforcement for image search. In: Proceedings of the ACM International Conference on Image and Video Retrieval. New York, USA: ACM, 2010. 34-41
[32]
Vapnik V. The Nature of Statistical Learning Theory. Berlin: Springer-Verlag, 1995
[33]
Sun J D, Wu X S. Chain code distribution-based image retrieval. In: Proceedings of the 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing. New York, USA: IEEE, 2006. 139-142
[34]
Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1-38