全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义时变脉冲系统的输入输出时域稳定

DOI: 10.3724/SP.J.1004.2014.02512, PP. 2512-2520

Keywords: 广义时变系统,矩阵微分不等式,输入输出时域稳定,状态反馈

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了广义时变脉冲系统的输入输出时域稳定问题.基于矩阵微分不等式(Differentialmatrixinequalities,DMI),给出了两个上述系统输入输出时域稳定的充分条件分别对应L2干扰输入和L∞干扰输入.这样的条件要求矩阵微分不等式解的存在性.接下来根据给出的充分条件设计了控制器,使得闭环系统输入输出时域稳定.本文的结果对于一般情况下的广义时变系统同样适用.最后,给出了两个算例来验证结果的有效性.

References

[1]  Amato F, Ambrosino R, Cosentino C, De Tommasi G. Input-output finite-time stabilization of linear systems. Automatica, 2010, 46(9): 1558-1562
[2]  Amato F, Carannante G, De Tommasi G, Pironti A. Input-output finite-time stability of linear systems: necessary and sufficient conditions. IEEE Transactions on Automatic Control, to be published
[3]  Amato F, Carannante G, De Tommasi G, Pironti A. Necessary and sufficient conditions for input-output finite-time stabilization of linear time-varying systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL: IEEE, 2011. 1933-1937
[4]  Kamenkov G. On stability of motion over a finite interval of time. Journal of Applied Mathematics and Mechanics, 1953, 17: 529-540
[5]  Weiss L, Indante E. Finite-time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, 1967, 12(1): 54-59
[6]  Amato F, Ambrosino R, Cosentino C. Finite-time stability of linear time-varying systems: analysis and controller design. IEEE Transactions on Automatic Control, 2010, 55(4): 1003-1008
[7]  Garcia G, Tarbouriech S, Bernussou J. Finite-time stabilization of linear time-varying continuous systems. IEEE Transactions on Automatic Control, 2009, 54(2): 364-369
[8]  Liu L, Sun J T. Finite-time stabilization of linear systems via impulsive control. International Journal of Control, 2008, 81(6): 905-909
[9]  Zhang Xue-Feng, Zhang Qing-Ling. On controllability and observability of linear time-varying singular systems. Acta Automatica Sinica, 2009, 35(9): 1249-1253(张雪峰, 张庆灵. 线性时变广义系统的能控性和能观性问题. 自动化学报, 2009, 35(9): 1249-1253)
[10]  Kabla N A, Debeljkovi? D L J. Finite-time stability of time-varying linear singular systems. In: Proceedings of the 37th IEEE Conference on Decision and Control. Belgrade: IEEE, 1998
[11]  Su Xiao-Ming, Lv Ming-Zhu. Analysis of robust stability for linear time-varying uncertain periodic descriptor systems. Acta Automatica Sinica, 2006, 32(4): 481-488 (苏晓明, 吕明珠. 广义不确定周期时变系统的鲁棒稳定性分析. 自动化学报, 32(4): 481-488)
[12]  Amato F, Carannante G, De Tommasi G, Pironti A. Input-output finite-time stabilization of LTV systems via dynamic output feedback. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL: IEEE, 2011. 1928-1932
[13]  Amato F, Carannante G, De Tommasi G, Pironti A. Input-output finite-time stabilization with constrained control inputs. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui, Hawaii: IEEE, 2012. 5731-5736
[14]  Lebedev A. On stability of motion during a given interval of time. Journal of Applied Mathematics and Mechanics, 1954, 18: 139-148
[15]  Amato F, Ambrosino R, Ariola M, Cosentino C. Finite-time stability of linear time-varying systems with jumps. Automatica, 2009, 45(5): 1354-1358
[16]  Amato F, Ariola M, Cosentino C. Finite-time stabilization via dynamic output feedback. Automatica, 2006, 42(2): 337-342
[17]  Shen Y J. Finite-time control of linear parameter-varying systems with norm-bounded exogenous disturbance. Journal of Control Theory and Applications, 2008, 6(2): 184-188
[18]  Wang C J. Controllability and observability of linear time-varying singular systems. IEEE Transactions on Automatic Control, 1999, 44(10): 1901-1905
[19]  Wang C J. Impulse observability and impulse controllability of linear time-varying singular systems. Automatica, 2001, 37(11): 1867-1872
[20]  Kabla N A, Debeljkovi? D L J. Finite-time stability robustness of time-varying linear singular systems. In: Proceedings of the 3rd Asian Control Conference. Shanghai: IEEE, 2000
[21]  Kabla N A, Debeljkovi? D L J. Finite-time instability of time-varying linear singular systems. In: Proceedings of the 1999 American Control Conference. San Diego: IEEE, 1999. 1796-1800
[22]  Wang Xiao-Hua, Liu Xiao-Ping. Disturbance decoupling of nonlinear generalized time-varying systems. Acta Automatica Sinica, 2000, 26(6): 798-820 (王晓华, 刘晓平. 非线性广义时变系统的干扰解耦. 自动化学报, 2000, 26(6): 798-820)
[23]  Zhao S W, Sun J T, Liu L. Finite-time stability of linear time-varying singular systems with impulsive effects. International Journal of Control, 2008, 81(11): 1824-1829
[24]  Xu J, Sun J. Finite-time stability of linear time-varying singular impulsive systems. IET Control Theory Applications, 2010, 4(10): 2239-2244

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133