全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种适用于稀疏无线传感器网络的改进分布式UIF算法

DOI: 10.3724/SP.J.1004.2014.02490, PP. 2490-2498

Keywords: 稀疏无线传感器网络,无效节点,分布式无迹信息滤波,局部无迹信息滤波,加权平均一致性算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?分布式无迹信息滤波(Distributedunscentedinformationfilter,DUIF)算法是一种有效的非线性分布式状态估计多源信息融合方法,然而当将该算法应用于稀疏无线传感器网络(Wirelesssensornetworks,WSN)时,稀疏WSN中存在的无效节点会引起使滤波趋于发散的平均一致误差.针对该问题,本文提出一种改进DUIF算法.该算法不改变DUIF算法的级联结构,而是将其底层和上层滤波器分别改进为局部无迹信息滤波器(Localunscentedinformationfilter,LUIF)和加权平均一致性滤波器.LUIF对每个节点的局部多源观测信息进行局部融合,得到局部的后验估计信息向量和矩阵,进而将它们作为加权平均一致性滤波器的输入,最终得到不包含平均一致误差的分布式后验估计结果.其中,加权平均一致性滤波器是通过对由LUIF输出的局部后验估计信息向量和矩阵分别进行平均一致性滤波而得以在改进DUIF算法框架下实现的.同时,在此过程中,相邻节点之间的状态估计互相关信息也被引入改进DUIF算法的输出结果中,进一步增强了滤波的可靠性.仿真实验结果表明,改进DUIF算法能够在稀疏WSN中对机动目标进行有效跟踪,在估计精度和抑制滤波发散方面明显优于标准DUIF算法.

References

[1]  Luo Xu, Chai Li, Yang Jun. Offshore pollution source localization in static water using wireless sensor networks. Acta Automatica Sinica, 2014, 40(5): 849-861(罗旭, 柴利, 杨君. 无线传感器网络下静态水体中的近岸污染源定位. 自动化学报, 2014, 40(5): 849-861)
[2]  Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 6698-6703
[3]  Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
[4]  Li W L, Jia Y M. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal Processing, 2012, 92(10): 2464-2470
[5]  Li W L, Jia Y M. Consensus-based distributed multiple model UKF for jump Markov nonlinear systems. IEEE Transactions on Automatic Control, 2012, 57(1): 227-233
[6]  Kamgarpour M, Tomlin C. Convergence properties of a decentralized Kalman filter. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 3205-3210
[7]  Li Chang-Sheng, Wang Yu-Zhen. Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Automatica Sinica, 2014, 40(3): 415-422(李长生, 王玉振. 端口受控哈密顿多智能体系统的输出一致性协议设计. 自动化学报, 2014, 40(3): 415-422)
[8]  Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482
[9]  Demetriou M A. Design of consensus and adaptive consensus filters for distributed parameter systems. Automatica, 2010, 46(2): 300-311
[10]  Kamal A T, Ding C, Song B, Farrell J A, Roy-Chowdhury A K. Distributed Kalman filtering for sensor networks. In: Proceedings of 46th IEEE Conference on Decision and Control. New Orleans, LA: IEEE, 2007. 5492-5498
[11]  Olfati-Saber R. Kalman-consensus filter: optimality, stability, and performance. In: Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with the 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 7036-7042
[12]  Saber R O, Murray R M. Consensus protocols for networks of dynamic agents. In: Proceedings of the 2003 American Control Conference. Denver, CO, USA: IEEE, 2003. 951-956
[13]  Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Movement consensus of complex fractional-order multi-agent systems. Acta Automatica Sinica, 2014, 40(3): 489-496(杨洪勇, 郭雷, 张玉玲, 姚秀明. 复杂分数阶多自主体系统的运动一致性. 自动化学报, 2014, 40(3): 489-496)
[14]  Vercauteren T, Wang X. Decentralized sigma-point information filters for target tracking in collaborative sensor networks. IEEE Transactions on Signal Processing, 2005, 53(8): 2997-3009
[15]  Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference. Seville, Spain: IEEE, 2005. 8179-8184
[16]  Bai H, Freeman R A, Lynch K M. Distributed Kalman filtering using the internal model average consensus estimator. In: Proceedings of the 2011 American Control Conference. San Francisco, CA: IEEE, 2011. 1500-1505
[17]  Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering. Signal Processing Letters, 2008, 15: 861-864
[18]  Sibley G, Sukhatme G, Matthies L. The iterated sigma point filter with applications to long range stereo. In: Proceedings of the Robotics Science and Systems. Philadelphia, USA: MIT Press, 2006: 263-270
[19]  Kingston D B, Beard R W. Discrete-time average-consensus under switching network topologies. In: Proceedings of the 2006 American Control Conference. Minnesota, USA: IEEE, 2006. 3551-3556
[20]  Kamal A T, Ding C, Song B, Farrell J A, Roy-Chowdhury A K. A generalized Kalman consensus filter for wide-area video networks. In: Proceedings of Decision and Control and European Control Conference. Orlando, FL: IEEE, 2011. 7863-7869
[21]  Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
[22]  Yang Wen. Consensus Problem in Multi-Agent Systems [Ph.D. dissertation], Shanghai Jiao Tong University, China, 2009(杨文. 多智能体系统一致性问题研究 [博士学位论], 上海交通大学, 中国, 2009)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133