全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于抗差自适应容积卡尔曼滤波的超紧耦合跟踪方法

DOI: 10.3724/SP.J.1004.2014.02530, PP. 2530-2540

Keywords: 超紧耦合导航,容积卡尔曼滤波,抗差自适应,高动态,信号跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为降低基于单一调节回路的超紧耦合结构存在的反作用影响,设计了一种基于双回路的超紧耦合结构.基于此,为解决所设计结构中跟踪环路的非线性滤波问题,针对测量异常误差和动力学模型误差,提出了一种基于抗差自适应容积卡尔曼滤波(RobustadaptivecubatureKalmanfilter,RACKF)的超紧耦合跟踪算法.该算法采用稳健M估计调整容积卡尔曼滤波(CubatureKalmanfilter,CKF)算法,对观测量中粗差的影响“程度”进行探测和处理,以减小观测量异常误差产生的影响,同时利用自适应调节因子对算法进行调节修正,以处理动态扰动误差引入的影响.实验结果表明:所提出的方法能有效地处理模型不准确所引入的误差,较好地实现全球定位系统(Globalpositioningsystem,GPS)卫星信号的高精度和稳定跟踪,其跟踪性能远优于基于单一回路的跟踪方法,同时优于基于无迹卡尔曼滤波(UnscentedKalmanfilter,UKF)和基于CKF的跟踪方法,提升了导航系统在高动态条件下的适应性能.

References

[1]  Bao Wei-Min. Present situation and development tendency of aerospace control techniques. Acta Automatica Sinica, 2013, 39(6): 697-702(包为民. 航天飞行器控制技术研究现状与发展趋势. 自动化学报, 2013, 39(5): 697-702)
[2]  Ohlmeyer E J. Analysis of an ultra-tightly coupled GPS/ INS system in jamming. In: Proceedings of the 2006 IEEE/ ION Position, Location, and Navigation Symposium. San Diego, California, USA: IEEE, 2006. 44-53
[3]  Fu Li, Wang Ling-Ling, Gao Peng, Guo Zhi-Ying. System design of an ultra-tight MIMU/software receiver integration. Acta Electronica Sinica, 2011, 39(3): 660-665(富立, 王玲玲, 高鹏, 郭志英. 一种微惯性/软件接收机超紧组合方案研究. 电子学报, 2011, 39(3): 660-665)
[4]  Sun Yao, Zhang Qiang, Wan Lei. Small autonomous underwater vehicle navigation system based on adaptive UKF algorithm. Acta Automatica Sinica, 2011, 37(3): 342-353(孙尧, 张强, 万磊. 基于自适应UKF算法的小型水下机器人导航系统. 自动化学报, 2011, 37(3): 342-353)
[5]  Liu J, Cai B G, Tang T, Wang J. A CKF based GNSS/INS train integrated positioning method. In: Proceedings of the 2010 International Conference on Mechatronics and Automation. Xi'an, China: IEEE, 2010. 1686-1689
[6]  Sun Feng, Tang Li-Jun. INS/GPS integrated navigation filter algo-rithm based on cubature Kalman filter. Control and Decision, 2012, 27(7): 1032-1036(孙枫, 唐李军. 基于Cubature Kalman Filter 的INS/GPS组合导航滤波算法. 控制与决策, 2012, 27(7): 1032-1036)
[7]  Jia B, Xin M, Cheng Y. Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 367-379
[8]  Arasaratnam I, Simon H, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 2010, 58(10): 4977-4993
[9]  Mu Jing, Cai Yuan-Li. Iterated cubature Kalman filter and its application. Systems Engineering and Electronics, 2011, 33(7): 1454-1458(穆静, 蔡远利. 迭代容积卡尔曼滤波算法及其应用. 系统工程与电子技术, 2011, 33(7): 1454-1458)
[10]  Wang Qiu-Ting. The Theory and Application Research of Adaptive-robust UKF for Satellite Integrated Navigation System [Ph.D. dissertation], Huazhong University of Science and Technology, Chinese, 2010(汪秋婷. 自适应抗差UKF在卫星组合导航中的理论与应用研究[博士学位论文], 华中科技大学, 中国, 2010)
[11]  Gui Q, Zhang J. Robust biased estimation and its applications in geodetic adjustments. Journal of Geodesy, 1998, 72(7-8): 430-435
[12]  Shi Yong, Han Chong-Zhao. Adaptive UKF method with applications to target tracking. Acta Automatica Sinica, 2011, 37(6): 755-759(石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用. 自动化学报, 2011, 37(6): 755-759)
[13]  Song Qi, Han Jian-Da. An adative UKF algorithm for the state and parameter estimations of a mobile robot. Acta Automatica Sinica, 2008, 34(1): 72-79
[14]  Zhao Xin, Wang Shi-Cheng, Zhang Jin-Sheng, Fan Zhi-Liang, Min Hai-Bo. Real-time fault detection method based on belief rule base for aircraft navigation system. Chinese Journal of Aeronautics, 2013, 26(3): 717-729
[15]  Luo Yong, He Xiao-Feng, Wu Wen-Qi, Luo Bing. Base band signal pre-filter model based on dual-filter structure. Journal of Chinese Inertial Technology, 2011, 19(5): 584-589(罗勇, 何晓峰, 吴文启, 罗兵. 基于双滤波器结构的基带信号预处理滤波模型. 中国惯性技术学报, 2011, 19(5): 584-589)
[16]  Badu R, Wang J L. Ultra-tight GPS/INS/PL integration: a system concept and performance analysis. GPS Solution, 2009, 13(1): 75-82
[17]  Lashley M, Bevly D M. A comparison of the performance of a non-coherent deeply integrated navigation algorithm and a tightly coupled navigation algorithm. In: Proceedings of the 2008 International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS). Savannah, Georgia, USA: ION, 2008. 2123-2129
[18]  Arasaratnam I, Simon H. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 12541269
[19]  Pesonen H, Piché R. Cubature-based Kalman filters for positioning. In: Proceedings of the 2010 Workshop on Positioning Navigation and Communication. Dresden, Germany: IEEE, 2010. 45-49
[20]  Bae J, Kim Y. Nonlinear estimation for spacecraft attitude using decentralized unscented information filter. In: Proceedings of the 2010 International Conference on Control Automation and Systems. Gyeonggi-do, Korea: IEEE, 2010. 1562-1566
[21]  Mu J, Cai Y L, Zhang J M. Square root cubature particle filter. Advanced Materials Research, 2011, 219-220: 727731
[22]  Hwang D H, Lim D W, Cho S L, Lee S J. Unified approach to ultra-tightly-coupled GPS/INS integrated navigation system. IEEE Aerospace and Electronic Systems Magazine, 2011, 3: 30-38
[23]  Koch K R, Yang Y. Robust Kalman filter for rank deficient observation models. Journal of Geodesy, 1998, 72(7-8): 436 -441
[24]  Yang Y, He H, Xu G. Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy, 2001, 75(2-3): 109-116
[25]  Wu F M, Yang Y X. An extended adaptive Kalman filtering in tight coupled GPS/INS integration. Survey Review, 2010, 42(316): 146-154

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133