全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

控制增益为未知函数的不确定系统预设性能反演控制

DOI: 10.3724/SP.J.1004.2014.02521, PP. 2521-2529

Keywords: 预设性能,误差转化,反演,神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

?对一类控制增益为未知函数的不确定严格反馈系统的预设性能反演控制进行研究.首先,提出一种新的变参数约束方案,放宽了对初始跟踪误差已知的限制,并通过误差转化将不等式约束的受限系统转化为非受限系统.随后,通过引入积分型Lyapunov函数,避免了因控制增益未知而引起的系统奇异问题.最后,综合应用自适应技术、径向基函数(Radialbasisfunction,RBF)神经网络和反演控制技术完成了控制器的设计,系统中的未知函数利用RBF神经网络直接进行逼近.所设计的控制器能够满足预设性能的要求,且保证闭环系统所有的状态量有界.仿真研究证明了控制器设计方法的有效性.

References

[1]  Seto D, Annaswamy A M, Baillieul J. Adaptive control of nonlinear systems with a triangular structure. IEEE Transactions on Automatic Control, 1994, 39(7): 1411-1428
[2]  Ge S S, Hang C C, Lee T H, Zhang T. Stable Adaptive Neural Network Control. Boston: Kluwer, 2002.
[3]  Piat F M, Morse A S. A cyclic switching strategy for parameter-adaptive control. IEEE Transactions on Automatic Control, 1994, 39(6): 1172-1183
[4]  Lin Y, Liu H, Sun X X. A variable structure MRAC with expected transient and steady state performance. Automatica, 2006, 42(5): 805-813
[5]  Gai W D, Wang H L, Zhang J, Li Y X. Adaptive neural network dynamic inversion with prescribed performance for aircraft flight control. Journal of Applied Mathematics, 2013, 2013: Article ID 452653
[6]  Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. New York: Wiley, 1995.
[7]  Spooner J T, Maggiore M, Ordó?ez R, Passino K M. Stable Adaptive Control and Estimation for Nonlinear Systems-Neural and Fuzzy Approximator Techniques. New York: Wiley, 2002.
[8]  Rovithakis G A. Stable adaptive neuro-control design via Lyapunov function derivative estimation. Automatica, 2001, 37(8): 1213-1221
[9]  Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004, 34(1): 499-516
[10]  Weller S R, Goodwin G C. Hysteresis switching adaptive control of linear multivariable systems. IEEE Transactions on Automatic Control, 1994, 39(7): 1360-1375
[11]  Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica, 2000, 36(12): 1835-1846
[12]  Ge S S, Hang C C, Zhang T. A direct method for robust adaptive nonlinear control with guaranteed transient performance. Systems and Control Letters, 1999, 37(5): 275-284
[13]  Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances. In: Proceedings of the 16th Mediterranean Conference on Control and Automation. Ajaccio, France: IEEE, 2008. 1035-1040
[14]  Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099
[15]  Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(5): 1220-1226
[16]  Yiannis K, Zoe D. Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robotics and Autonomous Systems, 2012, 60(2): 214-226
[17]  Park J, Sandberg I W. Universal approximation using radial basis function networks. Neural Computation, 1991, 3(2): 246-257
[18]  Khalil H K. Nonlinear Systems (3rd edition). San Antonio: Pearson Education, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133