全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂非凸约束优化难题与迭代动态多样进化算法

DOI: 10.3724/SP.J.1004.2014.02469, PP. 2469-2479

Keywords: 约束优化,进化算法,多智能体,群体智能

Full-Text   Cite this paper   Add to My Lib

Abstract:

?进化算法的迅速发展,为非凸约束优化问题的求解提供了有效途径,但目前常用优化算法还未能全面满足更为复杂的约束条件或目标分布对寻优方式灵活应变能力的特别需求.首先,本文研究发现,当优化问题在全局最优解的某一较小邻域内,依然分布有复杂的局部极值或可行域分布时,大多数进化算法中不灵活的探索与挖掘方式将会在寻优后期导致误收敛现象发生.其次,为解决这一难题,本文继续对问题特征与算法规则进行了深入探讨,并提出用于解决该类问题的迭代动态多样进化算法(IDDEA).该算法利用多智能体创建一种新型占优评估策略,并以此为基础设计出较优子区域的划分方式.本文所提子区域的划分,在充分发挥动态多样搜索进化方式的探索能力前提下迭代推进,逐步缩小寻优空间,进而使得寻优采样在收敛的同时,依然保持原有探索与挖掘的灵活权衡模式.再次,本文还提出一种最小惩罚函数,为IDDEA引入一种自适应惩罚机制,来动态调整不可行代理的适应度分配,从而有效避免了选择罚系数的难题.最后,IDDEA在若干工程优化设计问题中的成功应用表明,本文在合理的问题分析基础上,提供了更加有效的算法设计思路与成果.

References

[1]  Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445-455
[2]  Nema S, Goulermas J Y, Sparrow G, Helman P. A hybrid cooperative search algorithm for constrained optimization. Structural and Multidisciplinary Optimization, 2011, 43(1): 107-119
[3]  Huang Xiao-Ling, Chai Tian-You. Particle swarm optimization for raw material purchasing plan in large scale ore dressing plant. Acta Automatica Sinica, 2009, 35(5): 632-636 (in Chinese)
[4]  Wang Chun-Sheng, Wu Min, Cao Wei-Hua, He Yong. Intelligent integrated modeling and synthetic optimization for blending process in lead-zinc sintering. Acta Automatica Sinica, 2009, 35(5): 605-612 (in Chinese)
[5]  Vural R A, Yildirim T, Kadioglu T, Basargan A. Performance evaluation of evolutionary algorithms for optimal filter design. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 135-147
[6]  Li X D, Yao X. Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(2): 210-224
[7]  Blackwell T. A study of collapse in bare bones particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 354-372
[8]  Pan Feng, Zhou Qian, Li Wei-Xing, Gao Qi. Analysis of standard particle swarm optimization algorithm based on Markov chain. Acta Automatica Sinica, 2013, 39(4): 381-389 (in Chinese)
[9]  Liu Jian-Hua, Liu Guo-Mai, Yang Rong-Hua, Hu Wen-Yu. Analysis of interactivity and randomness in particle swarm optimization. Acta Automatica Sinica, 2012, 38(9): 1471-1484 (in Chinese)
[10]  Wang Y, Cai Z X. Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 117-134
[11]  Krohling R A, dos Santos-Coelho L. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(6): 1407-1416
[12]  Daneshyari M, Yen G G. Constrained multiple-swarm particle swarm optimization within a cultural framework. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42(2): 475-490
[13]  Wang Y, Jiao Y C, Li H. An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2005, 35(2): 221-232
[14]  Whitley D, Starkweather T, Bogart C. Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Computing, 1990, 14(3): 347-361
[15]  Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. New York, USA: IEEE, 1995. 1942-1948
[16]  Settles M, Soule T. Breeding swarms: a GA/PSO hybrid. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washington, DC: ACM, 2005. 161-168
[17]  Gao Wei-Shang, Shao Cheng, Gao Qin. Pseudo-collision in swarm optimization algorithm and solution: rain forest algorithm. Acta Physica Sinica, 2013, 62(19): 20-35 (in Chinese)
[18]  Himmelblau D M, Clark B J, Eichberg M. Applied Nonlinear Programming. New York: McGraw-Hill, 1972.
[19]  Gen M, Cheng R. Genetic Algorithms and Engineering design. New York: John Wily and Sons, 1997.
[20]  Arora J S. Introduction to optimum design. New York: McGraw-Hill, 1989.
[21]  Deb K. Geneas: a robust optimal design technique for mechanical component design. Evolutionary Algorithms in Engineering Applications. New York: Springer 1997. 497-514
[22]  Coello C A C, Montes E M. Use of dominance-based tournament selection to handle constraints in genetic algorithms. Intelligent Engineering Systems through Artificial Neural Networks (ANNIE2001), 2001, 11: 177-182
[23]  Ragsdell K M, Phillips D T. Optimal design of a class of welded structures using geometric programming. Journal of Manufacturing Science and Engineering, 1976, 98(3): 1021-1025
[24]  Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338
[25]  He S, Prempain E, Wu Q H. An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization, 2004, 36(5): 585-605
[26]  Yang B, Chen Y P, Zhao Z L, Han Q Y. A master-slave particle swarm optimization algorithm for solving constrained optimization problems. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, 2006. 3208-3212
[27]  Liu Gang, Lao Song-Yang, Yuan Can, Hou Lv-Lin, Tan Dong-Feng. OACRR-PSO algorithm for anti-ship missile path planning. Acta Automatica Sinica, 2012, 38(9): 1528-1537 (in Chinese)
[28]  Wu Q, Law R, Wu E, Lin J X. A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization. Information Sciences, 2013, 238: 96-110
[29]  Wu Q, Law R. Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive gaussian particle swarm optimization. Information Sciences, 2010, 180(23): 4514-4528
[30]  Pehlivanoglu Y V. A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 436-452
[31]  Chen W N, Zhang J, Lin Y, Chen N, Zhan Z H, Chung H, Li Y, Shi Y H. Particle swarm optimization with an aging leader and challengers. IEEE Transactions on Evolutionary Computation, 2013, 17(2): 241-258
[32]  Naznin F, Sarker R, Essam D. Progressive alignment method using genetic algorithm for multiple sequence alignment. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 615-631
[33]  Wang Y, Cai Z X, Zhou Y R, Zeng W. An adaptive tradeoff model for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 80-92
[34]  Cai Z X, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675
[35]  Tessema B, Yen G G. An adaptive penalty formulation for constrained evolutionary optimization. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(3): 565-578
[36]  Venkatraman S, Yen G G. A generic framework for constrained optimization using genetic algorithms. IEEE Transactions on Evolutionary Computation, 2005, 9(4): 424-435
[37]  Grefenstette J J. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 1986, 16(1): 122-128
[38]  Weile D S, Michielssen E. Genetic algorithm optimization applied to electromagnetics: a review. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 343-353
[39]  Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, USA: IEEE, 1995. 39-43
[40]  Robinson J, Sinton S, Rahmat-Samii Y. Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In: Proceedings of Antennas and Propagation Society International Symposium, 2002. New York, USA: IEEE, 2002. 314-317
[41]  Rahmat-Samii Y. Genetic algorithm (GA) and particle swarm optimization (PSO) in engineering electromagnetics. In: Proceedings of the 17th International Conference on Applied Electromagnetics and Communications, 2003. Dubrovnik, Croatia: IEEE, 2003. 1-5
[42]  Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294
[43]  Belegundu A D. A Study of Mathematical Programming Methods for Structural Optimization [Ph.D. dissertation], University of Iowa, Iowa, 1982.
[44]  Coello C A C, Montes E M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 2002, 16(3): 193-203
[45]  Sandgren E. Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design, 1990, 112(2): 223-229
[46]  Ray T, Liew K M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 2003, 7(4): 386-396

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133