全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于薛定谔方程的随机滤波算法

DOI: 10.3724/SP.J.1004.2014.02370, PP. 2370-2376

Keywords: 自适应滤波,量子力学,量子递归神经网络(RQNN)

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对一步预测问题,本文提出一种新的自适应滤波算法,该算法通过神经网络来调制薛定谔方程的势场函数.这种算法就是所谓的量子递归神经网络(RQNN),它可以过滤嵌入在真实信号中的非平稳噪声且不需要信号和噪声的任何先验信息.本文通过RQNN与RLS算法的仿真结果比较,表明:RQNN在过滤嵌入在直流信号,正弦信号,阶梯信号和语言信号中的高斯平稳噪声,高斯非平稳噪声或非高斯平稳噪声更准确和有更好的自适应性.实验结果表明:RQNN在过滤正弦信号中的高斯噪声时,输出信噪比相对于输入信噪比提高了20dB,这比RLS滤波器高10dB.

References

[1]  Feng Bo, Ma Hong-Bin, Fu Meng-Yin, Wang Shun-Ting. A framework of finite-model Kalman filter with case study: MVDP-FMKF algorithm. Acta Automatica Sinica, 2013, 39(8): 1246-1256 (in Chinese)
[2]  Ge Quan-Bo, Li Wen-Bin, Xu Zi. Centralized fusion algorithms based on EKF for multisensor non-linear systems. Acta Automatica Sinica, 2013, 36(6): 816-825 (in Chinese)
[3]  Cohen C, Diu B, Lalo? F [Author], Liu Jia-Mo, Chen Xing-Kui [Translator]. Quantum Mechanics. Beijing: Higher Education Press, 1987.
[4]  Behera L, Kar I. Quantum stochastic filtering. In: Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics. The Big Island, Hawaii, USA: IEEE, 2005. 2161-2167
[5]  Behera L, Kar I, Elitzur A C. A recurrent quantum neural network model to describe eye tracking of moving targets. Found of Physics Letters, 2005, 18(4): 357-370
[6]  Behera L, Kar I, Elitzur A C. The Emerging Physics of Consciousness: Recurrent Quantum Neural Network and Its Applications. Berlin: Springer, 2006.
[7]  Gandhi V, Arora V, Behera L, Prasad G, Coyle D H, McGinnity T M. A recurrent quantum neural network model enhances the EEG signal for an improved brain-computer interface. In: Proceedings of the 2011 IET Seminar on Assisted Living. London, UK: IET, 2011. 1-6
[8]  Gandhi V, Prasad G, Coyle D H, Behera L, McGinnity T M. Quantum neural network-based EEG filtering for a brain-computer interface. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(2): 278-288
[9]  Haykin S [Author], Shen Fu-Rao, Xu Ye, Zheng Jun, Chao Jing [Translator]. Neural Networks and Learning Machines (Third Edition). Beijing: China Machine Press, 2011.
[10]  Kuang Xiao-Jing, Wu Xian-Liang, Huang Zhi-Xiang, Wang Dao-Ping. Solving time-dependent Schr?dinger equation based on FDTD method. In: Proceedings of the 2009 National Conference on Microwave and Millimeter Wave. Xi'an, China: Publishing House of Electronics Industry, 2009. 990-993
[11]  Busy R S. Linear and nonlinear filtering. Proceedings of the IEEE, 1970, 58(6): 854-864
[12]  Zhang Yong-Gang, Huang Yu-Long, Wu Zhe-Min, Li Ning. A high order unscented kalman filtering method. Acta Automatica Sinica, 2014, 40(5): 838-848 (in Chinese)
[13]  Dawes R L. Quantum neurodynamics: neural stochastic filtering with the schroedinger equation. In: Proceedings of the 1992 International Joint Conference on Neural Networks. Baltimore, MD USA: IEEE, 1992. 133-140
[14]  Gandhi V, Prasad G, Coyle D H, Behera L, McGinnity T M. A novel EEG signal enhancement approach using a recurrent quantum neural network for a brain-computer interface. In: Technically Assisted Rehabilitation. Berlin, Germany: 2011
[15]  Gandhi V, McGinnity T M. Quantum neural network based surface EMG signal filtering for control of robotic hand. In: Proceedings of the 2013 International Joint Conference on Neural Networks. Dallas, USA: IEEE, 2013. 1-7
[16]  Zhang Yong-Gang, Wang Cheng-Cheng, Wei Ye, Li Ning, Zhou Wei-Dong. A spatially distributed variable tap-length strategy over adaptive networks. Acta Automatica Sinica, 2014, 40(7): 1355-1365 (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133