Duan L X, Tsang I W, Xu D. Domains transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479
[2]
Tu W T, Sun S L. A subject transfer framework for egg classification. Neurocomputing, 2012, 82: 109-116
[3]
Ando R K, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal Machine Learning Research, 2005, 6: 1817-1853
[4]
Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction. In: Proceedings of the 23th International Conference on Artificial Intelligence. Chicago, USA: ACM 2008. 677-682
[5]
Shao M, Castillo C, Gu Z H, Fu Y. Low-rank transfer subspace learning. In: Proceedings of the 12th International Conference on Data Mining. Brussels, Belgium: IEEE 2012. 1104-1109
[6]
Gupta S K, Phung D, Adams B, Adams B, Venkatesh S. Regularized nonnegative shared subspace learning. Data mining and knowledge discovery, 2013, 26(1): 57-97
[7]
Domeniconi C, Gunopulos D, Ma S, Yan B J, Al-Razgan M, Papadopoulos D. Locally adaptive metrics for custering high dimensional data. Data Mining and Knowledge Discovery, 2007, 14(1): 63-97
[8]
Yu J, Cheng Q S, Huang H K. Analysis of the weighting exponent in the FCM. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 634 -639
[9]
Golub G H, Van Loan C F. Matrix Computations (3rd Edition). Baltimore: The Johns Hopkins University Press, 1996.
[10]
Discovery Challenge [Online], available: http://www.ecml pkdd2006.org/challenge.html, January 3, 2013
[11]
Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2009. 1327-1336
[12]
Ji S W, Tang L, Yu S P, Ye J P. A shared-subspace learning framework for multi-label classification. ACM Transactions on Knowledge Discovery From Data, 2010, 4(2), Article No.8, DOI: 10.1145/1754428.1754431
[13]
Gu Xin, Wang Shi-Tong, Xu Min. A new cross-multidomain classification algorithm and its fast version for large datasets. Acta Automatica Sinica, 2014, 40(3): 531-547(顾鑫, 王士同, 许敏. 基于多源的跨领域数据分类快速新算法. 自动化学报, 2014, 40(3): 531-547)
[14]
Evgeniou T, Micchelli C A, Pontil M. Learning multiple tasks with kernel methods. Journal of Machine Learning Research, 2005, 6(4): 615-637
[15]
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
[16]
Zheng V W, Pan J L, Yang Q, Pan J F. Transferring multi-device localization models using latent multi-task learning. In: Proceedings of the 23th International Conference on Artificial Intelligence. Chicago, USA: ACM, 2008. 1427-1432
[17]
Si S, Tao D C, Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(7): 929-942
[18]
Yang S Z, Lin M, Hou C P, Zhang C S, Wu Y. A general framework for transfer sparse subspace learning. Neural Computing and Applications, 2012, 21(7): 1801-1817
[19]
Vapnik V. Statistical Learning Theory. New Jersey: Wiley-Interscience Press, 1998.
[20]
Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, 26(5): 639-652
[21]
Deng Z H, Choi K S, Chung F L, Wang S T. Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognition, 2010, 43(3): 767- 781
[22]
Yang S, Yan S C, Zhang C, Tang X O. Bilinear analysis for kernel selection and nonlinear feature extraction. IEEE Transactions on Neural Networks, 2007, 18(5): 1442-1452
[23]
Jiang Yi-Zhang, Deng Zhao-Hong, Wang Shi-Tong. Mamdani-Larsen type transfer learning fuzzy system. Acta Automatica Sinica, 2012, 38(9): 1393-1409(蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统. 自动化学报, 2012, 38(9): 1393-1409)
[24]
Gao J, Fan W, Jiang J, Han J W. Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008. 283-291
[25]
Wu P, Dietterich T G. Improving SVM accuracy by training on auxiliary data sources. In: Proceedings of the 21st International Conference on Machine Learning. New York, USA: ACM, 2004. 110-117
[26]
Chang C C, Lin C J. LIBSVM: A library for support vector machines [Online], available: http://www.csie.ntu.edu.tw/ ~cjlin/libsvm, October 14, 2012
[27]
Tao Jian-Wen, Wang Shi-Tong. Kernel distribution consistency based local domain adaptation learning. Acta Automatica Sinica, 2013, 39(8): 1295-1309 (陶剑文, 王士同. 核分布一致局部领域适应学习. 自动化学报, 2013, 39(8): 1295-1309)
[28]
Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 193-200
[29]
Tao Jian-Wen, Wang Shi-Tong. Domain adaptation kernel support vector machine. Acta Automatica Sinica, 2012, 38(5): 797-811(陶剑文, 王士同. 领域适应核支持向量机. 自动化学报, 2012, 38(5): 797-811)