全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于微分方程对称的分布参数系统稳态控制

DOI: 10.3724/SP.J.1004.2014.02163, PP. 2163-2170

Keywords: 分布参数系统,稳态控制,边界控制,对称,无穷小生成元

Full-Text   Cite this paper   Add to My Lib

Abstract:

?应用对称群理论中经典对称,以无穷小生成元为分析工具,考虑分布参数系统的控制问题已有研究,在此基础上,本文给出利用微分方程对称实现分布参数系统稳态控制的方法.通过求解微分方程的对称,借助其和无穷小生成元之间的关系,研究给出符合控制目标稳态要求的分布参数系统边界控制条件.针对两个例子,说明了利用微分方程对称实现分布参数系统稳态控制的过程,设计了边界控制条件,进行了仿真说明.相较基于经典对称获得分布参数系统无穷小生成元的过程,利用微分方程对称,避免了空间延拓过程,并可能获得与其不同的无穷小生成元形式.

References

[1]  Ng J, Dubljevic S. Optimal boundary control of parabolic PDE with time-varying spatial domain. In: Proceedings of the 4th International Symposium on Advanced Control of Industrial Processes. Hangzhou, China: IEEE, 2011. 216-221
[2]  Smyshlyaev A, Krstic M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters, 2005, 54(7): 613-625
[3]  Krstic M, Smyshlyaev A. Adaptive boundary control for unstable parabolic PDEs ——- Part I: Lyapunov design. IEEE Transactions on Automatic Control, 2008, 53(7): 1575-1591
[4]  Liu W J. Boundary feedback stabilization of an unstable heat equation. SIAM Journal on Control and Optimization, 2004, 42(3): 1033-1043
[5]  Cheng M B, Radisavljevic V, Su W C. Sliding mode boundary control of unstable parabolic PDE systems with parameter variations and matched disturbances. In: Proceedings of the 2009 American Control Conference. St. Louis, MO: IEEE, 2009. 4085-4090
[6]  Olver P J. Applications of Lie Groups to Differential Equations (2nd edition). New York: Springer, 1993
[7]  Palazo?lu A, Karaka? A. Control of nonlinear distributed parameter systems using generalized invariants. Automatica, 2000, 36(5): 697-703
[8]  Wei Ping, Zuo Xin, Zou Lei, Luo Xiong-Lin. Infinitesimal generator for boundary control of Burgers equation. Journal of the Tsinghua University (Science and Technology), 2012, 52(9): 1171-1175 (魏萍, 左信, 邹磊, 罗雄麟. 基于无穷小生成元的Burgers方程的边界控制. 清华大学学报(自然科学版), 2012, 52(9): 1171-1175)
[9]  Tian C. Symmetries and group-invariant solutions of differential equations. Applied Mathematics: Journal of Chinese Universities (Series B), 1994, 9(4): 319-324
[10]  Li Jian, Liu Yun-Gang. Adaptive boundary control for a class of uncertain heat equations. Acta Automatica Sinica, 2012, 38(3): 469-473 (李健, 刘允刚. 一类不确定热方程自适应边界控制. 自动化学报, 2012, 38(3): 469-473)
[11]  Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33(1): 59-68
[12]  Alessandri A, Gaggero M, Zoppoli R. Feedback optimal control of distributed parameter systems by using finite-dimensional approximation schemes. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(6): 984-995
[13]  Smyshlyaev A, Krstic M. Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia: Society for Industrial and Applied Mathematics, 2008
[14]  Krstic M, Smyshlyaev A. Adaptive control of PDEs. Annual Reviews in Control, 2008, 32(2): 149-160
[15]  Wu H N, Wang J W, Li H X. Exponential stabilization for a class of nonlinear parabolic PDE systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 2012, 20(3): 318-329
[16]  Cheng M B, Radisavljevic V, Su W C. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica, 2011, 47(2): 381-387
[17]  Tian Chou. Applications of Lie Groups to Differential Equation. Beijing: Science Press, 2001 (田畴. 李群及其在微分方程中的应用. 北京: 科学出版社, 2001)
[18]  Palazoglu A, Karakas A, Godasi S. Control of nonlinear distributed parameter processes using symmetry groups and invariance conditions. Computers and Chemical Engineering, 2002, 26(7-8): 1023-1036
[19]  Tian Chou. Transformation of equations and transformation of symmetries. Acta Mathematicae Applicatae Sinica, 1989, 12(2): 238-249 (田畴. 方程的变换与对称的变换. 应用数学学报, 1989, 12(2): 238-249)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133