Zhou Dong-Hua, Chen Mao-Yin, Xu Zheng-Guo. The Reliability Prediction and Optimal Maintenance Technology. Hefei: Press of University of Science and Technology of China, 2013.(周东华, 陈茂银, 徐正国. 可靠性预测与最优维护技术. 合肥: 中国科学技术大学出版社, 2013.)
[5]
Fan Ji-Cong, Wang You-Qing, Qin Si-Zhao. Combined indices for ICA and their applications to multi-variate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5): 494-501(樊继聪, 王友清, 秦泗钊. 联合指标独立成分分析在多变量过程故障诊断中的应用. 自动化学报, 2013, 39(5): 494-501)
[6]
Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
[7]
Zhou Dong-Hua, Shi Jian-Tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2014, 40(2): 161-171(周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述. 自动化学报, 2014, 40(2): 161-171)
[8]
Zhou Dong-Hua, Wei Mu-Heng, Si Xiao-Sheng. A survey on anomaly detection, life prediction and maintenance decision for industrial processes. Acta Automatica Sinica, 2013, 39(6): 711-722(周东华, 魏慕恒, 司小胜. 工业过程异常检测, 寿命预测与维修决策的研究进展. 自动化学报, 2013, 39(6): 711-722)
[9]
Si Xiao-Sheng, Hu Chang-Hua, Zhou Dong-Hua. Nonlinear degradation process modeling and remaining useful life estimation subject to measurement error. Acta Automatica Sinica, 2013, 39(5): 530-541(司小胜, 胡昌华, 周东华. 带测量误差的非线性退化过程建模与剩余寿命估计. 自动化学报, 2013, 39(5): 530-541)
[10]
Heng A, Zhang S, Tan A C C, Mathew J. Rotating machinery prognostics: state of the art, challenges and opportunities. Mechanical Systems and Signal Processing, 2009, 23(3): 724-739
[11]
Li C J, Lee H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mechanical Systems and Signal Processing, 2005, 19(4): 836-846
[12]
Kacprzynaki G J, Sarlashkar A, Roemer M J, Hess A, Hardman B. Predicting remaining life by fusing the physics of failure modeling with diagnostics. Joural of the Minerals Metals and Materials Society, 2004, 56(3): 29-35
[13]
Qiu J, Set B B, Liang S Y, Zhang C. Damage mechanics approach for bearing lifetime prognostics. Mechanical Systems and Signal Processing, 2002, 16(5): 817-829
[14]
Wang W. An adaptive predictor for dynamic system forecasting. Mechanical Systems and Signal Processing, 2007, 21(2): 809-823
[15]
Dong M, He D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mechanical Systems and Signal Processing, 2007, 21(5): 2248-2266
[16]
Jardine A K S, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510
[17]
Sun Y, Ma L, Mathew J, Wang W, Zhang S. Mechanical systems hazard estimation using condition monitoring. Mechanical Systems and Signal Processing, 2006, 20(5): 1189-1201
[18]
Wang W B, Zhang W J. A model to predict the residual life of aircraft engines based upon oil analysis data. Naval Research Logistics, 2005, 52(3): 276-284
[19]
Si X S, Wang W B, Hu C H, Zhou D H, Pecht M G. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Transactions on Reliability, 2012, 61(1): 50-67
[20]
Si X S, Wang W, Hu C H, Chen M Y, Zhou D H. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mechanical Systems and Signal Processing, 2013, 35(1-2): 219-237
[21]
Si X S, Wang W, Hu C H, Zhou D H. Remaining useful life estimation——a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213(1): 1-14
[22]
Wei M H, Chen M Y, Zhou D H. Multi-sensor information based remaining useful life prediction with anticipated performance. IEEE Transactions on Reliability, 2013, 62(1): 183-198
[23]
Xu Z G, Ji Y D, Zhou D H. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification. IEEE Transactions on Reliability, 2008, 57(2): 230-242
[24]
Li G, Qin S J, Ji Y D, Zhou D H. Reconstruction based fault prognosis for continuous processes. Control Engineering Practice, 2010, 18(10): 1211-1219
[25]
Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319
[26]
Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1): 223-234
[27]
Dunia R, Qin S J. Subspace approach to multi-dimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8): 1813-1831
[28]
Alcala C F, Qin S J. Reconstruction based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research, 2010, 49(17): 7849-7857
[29]
Han Zhi-Gang. A new method of dynamic system prediction. Acta Automatica Sinica, 1983, 9(3): 161-168 (韩志刚. 动态系统预报的一种新方法. 自动化学报, 1983, 9(3): 161-168)
[30]
Chen Mo, Ma Jie. Nonlinear fault prognosis for stack gas turbine machine based on KPCA-MLR. Journal of Beijing Information Science and Technology University, 2013, 28(1): 30-35(陈默, 马洁. 基于KPCA-MLR的烟气轮机非线性故障预测. 北京信息科技大学学报, 2013, 28(1): 30-35)