全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模型的子空间聚类与时间段蚁群算法的合同生产批量调度方法

DOI: 10.3724/SP.J.1004.2014.01991, PP. 1991-1997

Keywords: 冷轧,子空间聚类,蚁群算法,生产计划与调度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对目前冷轧薄板厂生产流程复杂、大量的多品种小批量合同并线生产,导致难以制定生产计划的问题,本文提出了混合模型子空间聚类(Subspaceclusteringmixedmodel,SCMM)方法,以合同中待加工钢卷的宽度、冷轧机组的入口厚度、出口厚度以及合同的交货期为约束,对待生产合同进行组批.依据冷轧厂实际生产过程,将冷轧机组视为核心节点,考虑准时交货、在制品库存和生产流向产能分配的要求,对组批后的生产合同建立全流程合同计划模型,并且利用提出的时间段蚁群算法(Time-sectionantcolonyoptimization,TSA),制定合同计划.利用生产过程的实际数据测试,本文的方法优于人工排产,可以满足制定冷轧薄板全流程生产计划的要求.

References

[1]  Zhang Xiao-Ping, Wang Wei, Zhao Jun. Steel coils merging based on system clusters and adaptive quantum genetic algorithm. Computer Integrated Manufacturing Systems, 2009, 15(7): 1421-1429(张小平, 王伟, 赵珺. 基于系统聚类和自适应量子遗传算法的钢卷拼卷方法. 计算机集成制造系统, 2009, 15(7): 1421-1429)
[2]  Liu Guo-Li, Zhang Bo, Tang Li-Xin. Modeling and optimization for a cold rolling production-inventory problem with backlogging. Control Theory and Applications, 2012, 29(11): 1512-1516(刘国莉, 张博, 唐立新. 可延迟供货的冷轧生产库存问题之建模与优化. 控制理论与应用, 2012, 29(11): 1512-1516)
[3]  Okano H, Davenport A J, Trumbo M, Reddy C, Yoda K, Amano M. Finishing line scheduling in the steel industry. IBM Journal of Research and Development, 2004, 48(5-6): 811-830
[4]  Wang L. Research on Production Planning and Dynamic Scheduling for the Whole Process of Cold Rolling and Its Application [Ph.D. dissertation], Dalian University of Technology, China, 2011
[5]  Zhao Jun, Liu Quan-Li, Wang Wei. Models and algorithms of production scheduling in tandem cold Rolling. Acta Automatica Sinica, 2008, 34(5): 565-573(赵君, 刘全利, 王伟. 冷轧生产调度模型及算法.自动化学报, 2008, 34(5): 565-573)
[6]  Wang L, Zhao J, Wang W. Order planning model and algorithm for whole process of cold rolling process. ICIC Express Letters, 2009, 3(3): 657-662
[7]  Yang Jing-Ping, Liu Xiao-Bing, Wang Yu-Chun, Bo Hong-Guang. Order-grouping quality design method for steel product based on multi-constrain clustering. Computer Integrated Manufacturing System, 2009, 15(11): 2104-2111(杨静萍, 刘晓冰, 王宇春, 薄洪光. 基于多约束聚类的钢铁合同组批质量设计方法. 计算机集成制造系统, 2009, 15(11): 2104-2111)
[8]  Wang Zhi-Gang, Zhao Jun, Wang Wei. Fuzzy job shop scheduling model and its algorithms for batch manufacturing on tandem cold rolling line. Control and Decision, 2009, 24(10): 1455-1462(王志刚, 赵珺, 王伟. 冷轧合同批量调度的模糊Job Shop模型及算法. 控制与决策, 2009, 24(10): 1455-1462)
[9]  Likas A, Vlassis N, Verbeek J. The global K-means clustering algorithm. Pattern Recognition, 2003, 36(2): 451-461
[10]  El-Sonbaty Y, Ismall M A, Farouk M. An efficient density based clustering algorithm for large databases. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, USA: IEEE, 2004. 673-677
[11]  Wan L, Yang J. Advanced split BIRCH algorithm in reconfigurable network. Journal of Networks, 2013, 8(9): 2056-2060
[12]  Agrawal R, Gehrke J, Gunopulos D, Paghavan P. Automatic subspace clustering of high dimensional data. Data Mining and Knowledge Discovery, 2005, 11(1): 5-33
[13]  Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105
[14]  Amir A, Lipika D. A K-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets. Pattern Recognition Letters, 2011, 32(7): 1062-1069
[15]  Foo N T, Pham T D, Jia X P. Feature interaction in subspace clustering using the Choquet integral. Pattern Recognition, 2012, 45(7): 2645-2660
[16]  Deng Z H, Choi K S, Chung F L, Wanf S T. Enhanced soft subspace clustering integrating within-cluster and between-cluster information. Pattern Recognition, 2010, 43(3): 767-781
[17]  Chen X J, Ye Y M, Xu X F, Huan Z X. A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recognition, 2012, 45(1): 434-446
[18]  Peng L Q, Zang J Y. An entropy weighting mixture model for subspace clustering of high-dimensional data. Pattern Recognition Letters, 2011, 32(8): 1154-1161
[19]  Chen L F, Jiang Q S. An extended em algorithm for subspace clustering. Frontiers of Computer Science in China, 2008, 2(1): 81-86
[20]  Domeniconi C, Gunopulos D, Ma S, Yan B J, Al-Razgan M, Papadopoulos D. Locally adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery, 2007, 14(1): 63-97
[21]  Chandra Mohan B, Baskaran R. A survey: ant colony optimization based recent research and implementation on several engineering domain. Expert Systems with Applications, 2012, 39(4): 4618-4627
[22]  Liu X J, Yi H, Ni Z H. Application of ant colony optimization algorithm in process planning optimization. Journal of Intelligent Manufacturing, 2013, 14(1): 1-13

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133