全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于反馈的精英教学优化算法

DOI: 10.3724/SP.J.1004.2014.01976, PP. 1976-1983

Keywords: 进化算法,精英教学优化算法,反馈,函数优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?精英教学优化算法(Elitistteaching-learning-basedoptimization,ETLBO)是一种基于实际班级教学过程的新型优化算法.本文针对ETLBO算法寻优精度低、稳定性差的问题,提出了反馈精英教学优化算法(FeedbackETLBO).在ETLBO算法的基础上,通过在学生阶段之后加入反馈阶段,增加了学生的学习方式,保持学生的多样性特性,提高算法的全局搜索能力.同时,反馈阶段是选举成绩较差的学生与教师交流,使成绩较差的学生快速向教师靠拢,使算法进行局部精细搜索,提高算法的寻优精度.对6个无约束及5个约束标准函数的测试结果表明,FETLBO算法与其他算法相比在寻优精度和稳定性上更具优势.最后将FETLBO算法应用于拉压弹簧优化设计问题及0-1背包问题,取得了满意结果.

References

[1]  Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbo: University of Michigan Press, 1975. 1-53
[2]  Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. Perth, Auslralia: IEEE, 1995. 1942-1948
[3]  Pan Feng, Chen Jie, Xin Bin, Zhang Juan. Several characteristics analysis of particle swarm optimizer. Acta Automatica Sinica, 2009, 35(7): 1010-1016(潘峰, 陈杰, 辛斌, 张娟. 粒子群优化方法若干特性分析. 自动化学报, 2009, 35(7): 1010-1016)
[4]  Pan Feng, Chen Jie, Gan Ming-Gang, Cai Tao, Tu Xu-Yan. Model analysis of particle swarm optimizer. Acta Automatica Sinica, 2006, 32(3): 368-377(潘峰, 陈杰, 甘明刚, 蔡涛, 涂序彦. 粒子群优化算法模型分析. 自动化学报, 2006, 32(3): 368-377)
[5]  Jin Xin-Lei, Ma Long-Hua, Wu Tie-Jun, Qian Ji-Xin. Convergence analysis of the particle swarm optimization based on stochastic processes. Acta Automatica Sinica, 2007, 33(12): 1263-1268(金欣磊, 马龙华, 吴铁军, 钱积新. 基于随机过程的PSO收敛性分析. 自动化学报, 2007, 33(12): 1263-1268)
[6]  Qian W Y, Li A J. Adaptive differential evolution algorithm for multi-objective optimization problems. Applied Mathematic and Computation, 2008, 201(1-2): 431-440
[7]  Storn R, Price K. Differential evolution——a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341-359
[8]  He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990
[9]  Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 2008, 8(1): 687-697
[10]  Karaboga D, Basturk B. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 2009, 214(1): 108-132
[11]  Karaboga D, Basturk B. A Powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. Journal of Global Optimization, 2007, 39(3): 459-471
[12]  Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer Aided Design, 2011, 43(3): 303-315
[13]  Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 2012, 183(1): 1-15
[14]  Niknam T, Azizipanah-Abarghooee R, Narimani M R. A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems. Engineering Applications of Artificial Intelligence, 2012, 25(8): 1577-1588
[15]  Rao R V, Patel V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 2012, 3(4): 535-560
[16]  Rajasekhar A, Rani R, Ramya K, Abraham A. Elitist teaching-learning opposition based algorithm for global optimization. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Seoul, Korea: IEEE, 2012. 1124-1129
[17]  Nian Xiao-Yu, Wang Zhen-Lei, Qian Feng. A hybrid algorithm based on differential evolution and group search optimization and its application on ethylene cracking furnace. Chinese Journal of Chemical Engineering, 2013, 21(5): 537-543
[18]  He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 2007, 20(1): 89-99
[19]  Ray T, Liew K M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 2003, 7(4): 386-396
[20]  Wang Y, Cai Z X, Zhou Y R. Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization. International Journal for Numerical Methods in Engineering, 2009, 77(11): 1501-1534
[21]  Huang F Z, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and computation, 2007, 186(1): 340-356
[22]  Zou D X, Gao L Q, Li S, Wu J H. Solving 0-1 knapsack problem by a novel global harmony search algorithm. Applied Soft Computing, 2011, 11(2): 1556-1554
[23]  Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 2007, 188(2): 1567-1579
[24]  Gao Fang, Cui Gang, Wu Zhi-Bo, Liu Hong-Wei, Yang Xiao-Zong. Virus-evolutionary particle swarm optimization algorithm for knapsackproblem. Journal of Harbin Institute of Technology, 2009, 41(6): 103-107(高芳, 崔刚, 吴智博, 刘宏伟, 杨孝宗. 求解背包问题的病毒协同进化粒子群算法. 哈尔滨工业大学学报, 2009, 41(6): 103-107)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133