全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磨矿粒度动态过程的一种快速MonteCarlo仿真方法

DOI: 10.3724/SP.J.1004.2014.01903, PP. 1903-1911

Keywords: 磨矿过程,优化运行控制,粒度分布模型,MonteCarlo仿真方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?磨矿是降低矿物粒度的工业过程,产品粒度是磨矿过程的关键质量指标.由于磨矿粒度难以在线检测且磨矿生产过程具有综合复杂特性,难以采用传统控制方法实现磨矿粒度的控制.因此,建立磨矿粒度和关键工艺参数的动态模型对于磨矿运行控制和优化具有重要意义.采用总量平衡原理获得磨矿粒度的微分方程模型多数情况下无法获得解析解.而基于MonteCarlo(MC)方法的磨矿粒度模型能够精确模拟磨矿粒度分布的动态变化,但是其仿真效率低难以实用.本文针对这一问题提出一种新的MC仿真方法:在定总量方法的基础上引入新的颗粒移除机制,在移除过程中动态地分配各个粒级颗粒数目并保持破裂前后各个粒级颗粒所占总颗粒数的百分比不变,避免颗粒移除过程中由于粒级差异导致的抽样误差,且避免MC仿真速度随着仿真推进下降的问题.仿真实验验证表明,本方法能够在保证一定精度前提下显著提高磨矿粒度MC仿真的计算速度.最后,通过一个实例介绍了本文仿真模型在磨矿优化控制中的应用.

References

[1]  Chen Bing-Chen. Mathematical Models of Mineral Processing. Shenyang: Northeastern University Press, 1990. (陈炳辰. 选矿数学模型. 沈阳: 东北大学出版社, 1990.)
[2]  Chai Tian-You. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories. Acta Automatica Sinica, 2009, 35(6): 641-649(柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35(6): 641-649)
[3]  Zhou P, Chai T, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743
[4]  Sbárbaro D. Dynamic Simulation and Model-based Control System Design for Comminution Circuits. London: Springer, 2010.
[5]  King R P. Modeling and Simulation of Mineral Processing Systems. Oxford: Butterworth-Heinemann, 2001.
[6]  Mishra B K. Monte Carlo Method for the Analysis of Particle Breakage. London: Elsevier, 2007. 637-660
[7]  Khalili S, Lin Y, Armaou A, Matsoukas T. Constant number Monte Carlo simulation of population balances with multiple growth mechanisms. AIChE Journal, 2010, 56(12): 3137-3145
[8]  Lee K, Matsoukas T. Simultaneous coagulation and break-up using constant-N Monte Carlo. Powder Technology, 2000, 110(1-2): 82-89
[9]  Kostoglou M. Handbook of Powder Technology. London: Elsevier, 2007. 793-835
[10]  Dai Wei, Chai Tian-You. Data-driven optimal operational control of complex grinding processes. Acta Automatica Sinica, 2014, 40(9): 2005-2014 (代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法. 自动化学报, 2014, 40(9): 2005-2014)
[11]  Chai T Y. Optimal operational control for complex industrial processes. In: Proceedings of the 8th IFAC Symposium on Advanced Control of Chemical Processes. Singapore: The International Federation of Automatic Control, 2012. 722-731
[12]  Schug B W, Nees M R, Gamarano T V. Process Simulation for Improved Plant Design through p&id Validation, Technical Report, Andritz Automation Inc., USA, 2012.
[13]  Su Jun-Wei, Gu Zhao-Lin, Xu X Y. Advances of solution methods of population balance equation for disperse phase system. Scientia Sinica Chimica, 2010, 40(2): 144-160(苏军伟, 顾兆林, Xu X Y. 离散相系统群体平衡模型的求解算法. 中国科学-化学, 2010, 40(2): 144-160)
[14]  Gillespie D T. Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 2007, 58(1): 35-55
[15]  Mishra B K. Monte Carlo simulation of particle breakage process during grinding. Powder Technology, 2000, 110(3): 246-252ewpage
[16]  Zhao Hai-Bo, Zheng Chu-Guang, Xu Ming-Hou. Multi-Monte Carlo method for simultaneous coagulation and breakage of nanoparticles. Proceedings of the Chinese Society for Electrical Engineering, 2005, 25(16): 96-101(赵海波, 郑楚光, 徐明厚. 用多重蒙特卡罗算法研究超细微颗粒物同时发生的凝并和破碎. 中国电机工程学报, 2005, 25(16): 96-101)
[17]  Rajamani K, Pate W T, Kinneberg D J. Time-driven and event-driven Monte Carlo simulations of liquid-liquid dispersions: a comparison. Industrial and Engineering Chemistry Fundamentals, 1986, 25(4): 746-752
[18]  Nageswararao K, Wiseman D M, Napier-Munn T J. Two empirical hydrocyclone models revisited. Minerals Engineering, 2004, 17(5): 671-687

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133