全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种空间分布式变阶数自适应网络滤波算法

DOI: 10.3724/SP.J.1004.2014.01355, PP. 1355-1365

Keywords: 自适应网络,扩散式信息融合,空间分布式算法,变阶数算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?现有的自适应网络滤波算法大都假设未知参数向量的阶数已知且恒定,无法解决阶数未知或时变条件下的参数向量估计问题.以最小化网络均方误差为准则,提出一种空间分布式变阶数自适应网络滤波算法.该算法仅要求网络中的各节点与相邻节点进行通信,通过扩散的方式实现整个网络数据信息的融合,具有计算量小、可操作性强及估计精度高的特点.仿真表明,提出的算法能够有效地估计和跟踪未知参数向量的阶数和权值.

References

[1]  Lopes C G, Sayed A H. Incremental adaptive strategies over distributed networks. IEEE Transactions on Signal Processing, 2007, 55(8): 4064-4077
[2]  Wang Le-Yi, Zhao Wen-Xiao. System identification: new paradigms, challenges, and opportunities. Acta Automatica Sinica, 2013, 39(7): 933-942(王乐一, 赵文虓. 系统辨识: 新的模式、挑战及机遇. 自动化学报, 2013, 39(7): 933-942)
[3]  Takahashi N, Yamada I, Sayed A H. Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Transactions on Signal Processing, 2010, 58(9): 4795-4810
[4]  Cattivelli F S, Lopes C G, Sayed A H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, 2008, 56(5): 1865-1877
[5]  Wan Yi-Ming, Dong Wei, Ye Hao. Distributed H∞ filtering with consensus strategies in sensor networks: considering consensus tracking error. Acta Automatica Sinica, 2012, 38(7): 1211-1217(万一鸣, 董炜, 叶昊. 传感器网络中带有一致性策略的分布式H∞滤波: 考虑一致性跟踪误差. 自动化学报, 2012, 38(7): 1211-1217)
[6]  Yang Xiao-Jun, Xing Ke-Yi. Channel fault tolerant target tracking in multi-hop wireless sensor networks based on particle filtering. Acta Automatica Sinica, 2011, 37(4): 440-448(杨小军, 邢科义. 无线多跳传感器网络下基于粒子滤波的信道容错的目标跟踪方法. 自动化学报, 2011, 37(4): 440-448)
[7]  Tu S Y, Sayed A H. Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, 2012, 60(12): 6217-6234
[8]  Khalili A, Tinati M A, Rastegarnia A, Chambers J A. Steady-state analysis of diffusion LMS adaptive networks with noisy links. IEEE Transactions on Signal Processing, 2012, 60(2): 974-979
[9]  Lee J W, Kim S E, Song W J, Sayed A H. Spatio-temporal diffusion strategies for estimation and detection over networks. IEEE Transactions on Signal Processing, 2012, 60(8): 4017-4034
[10]  Zhang Y G, Chambers J A, Sanei S, Kendrick P, Cox T J. A new variable tap-length LMS algorithm to model an exponential decay impulse response. IEEE Signal Processing Letters, 2007, 14(4): 263-266
[11]  Haykin S. Adaptive Filter Theory. New Jersey: Prentice-Hall, 1996
[12]  Sayed A H, Lopes C G. Adaptive processing over distributed networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, 90(8): 1504-1510
[13]  Cattivelli F S, Sayed A H. Diffusion LMS strategies for distributed estimation. IEEE Transactions on Signal Processing, 2010, 58(3): 1035-1048
[14]  Lopes C G, Sayed A H. Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Transactions on Signal Processing, 2008, 56(7): 3122-3136
[15]  Cattivelli F S, Sayed A H. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Transactions on Automatic Control, 2010, 55(9): 2069-2084
[16]  Chen J S, Sayed A H. Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Transactions on Signal Processing, 2012, 60(8): 4289-4305
[17]  Zhao X, Tu S Y, Sayed A H. Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Transactions on Signal Processing, 2012, 60(7): 3460-3475
[18]  Zhao X C, Sayed A H. Performance limits for distributed estimation over LMS adaptive networks. IEEE Transactions on Signal Processing, 2012, 60(10): 5107-5124
[19]  Chouvardas S, Slavakis K, Theodoridis S. Adaptive robust distributed learning in diffusion sensor networks. IEEE Transactions on Signal Processing, 2011, 59(10): 4692-4707
[20]  Gong Y, Cowan C F N. An LMS style variable tap-length algorithm for structure adaptation. IEEE Transactions on Signal Processing, 2005, 53(7): 2400-2407
[21]  Zhang Y G, Li N, Chambers J A, Sayed A H. Steady-state performance analysis of a variable tap-length LMS algorithm. IEEE Transactions on Signal Processing, 2008, 56(2): 839-845
[22]  Zhang Y G, Chambers J A. Convex combination of adaptive filters for a variable tap-length LMS algorithm. IEEE Signal Processing Letters, 2006, 13(10): 628-631
[23]  Li N, Zhang Y G, Zhao Y X, Hao Y L. An improved variable tap-length LMS algorithm. Signal Processing, 2009, 89(5): 908-912

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133