全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分维自适应稀疏网格积分非线性滤波器

DOI: 10.3724/SP.J.1004.2014.01249, PP. 1249-1264

Keywords: 高斯滤波,稀疏网格,自适应采样,高斯-厄米特积分,快速遍历

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对含加性高斯噪声的非线性离散系统,提出了可分别根据各维状态及量测方程的非线性函数特性来确定采样点及其权重的积分滤波器.设计了基于嵌入式高斯采样积分和稀疏网格法则的自适应多变量采样积分方法,可在匹配函数高阶泰勒展开项时,利用低阶采样点,提出了高效的数据结构和遍历算法,便于采用该积分方法分别估计系统状态/量测的预测均值和协方差矩阵.该滤波器既能根据各维非线性函数的特性确定采样点,又实现了对采样值和权重的完全复用,保证了算法效率.理论分析和仿真表明,该滤波算法中自适应调整的运算量小于计算非线性函数采样值.该滤波器与无迹卡尔曼滤波相比,提高了滤波精度,与固定形式的稀疏网格滤波器相比,提高了采样效率,且该方法为两者的广义形式.仿真实验也验证了状态估计的精确性和函数采样的高效性.

References

[1]  Wang Xiao-Xu, Pan Quan, Huang He, Gao Ang. Overview of deterministic sampling filtering algorithms for nonlinear system. Control and Decision, 2012, 27(6): 801-812 (王小旭, 潘泉, 黄鹤, 高昂. 非线性系统确定采样型滤波算法综述. 控制与决策, 2012, 27(6): 801-812)
[2]  Nie P Y, Fan J Y. A derivative-free filter method for solving nonlinear complementarilty problems. Applied Mathematics and Computation, 2005, 161(3): 787-797
[3]  Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269
[4]  Ito K, Xiong K Q. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927
[5]  Heiss F, Winschel V. Likelihood approximation by numerical integration on sparse grids. Journal of Econometrics, 2008, 144(1): 62-80
[6]  Smolyak S A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Mathematics Doklady, 1963, 4: 240-243
[7]  Bungartz H J, Dirnstorfer S. Multivariate quadrature on adaptive sparse grids. Computing, 2003, 71(1): 88-114
[8]  Bin J, Ming X, Yang C. Sparse-grid quadrature nonlinear filtering. Automatica, 2012, 48(2): 327-341
[9]  Baek K, Bang H. Adaptive sparse grid quadrature filter for spacecraft relative navigation. Acta Astronautica, 2013, 87(3): 96-106
[10]  Wang X Q, Fang K T. The effective dimension and quasi-Monte Carlo integration. Journal of Complexity, 2003, 19(2): 101-124
[11]  Dellaportas P, Wright D. Positive embedded integration Bayesian analysis. Statistics and Computing, 1991, 1(1): 1-12
[12]  Imai J, Tan K S. A general dimension reduction technique for derivative pricing. Journal of Computing Finance, 2006, 10(2): 129-155
[13]  Glasserman P. Monte Carlo Methods in Financial Engineering. Berlin: Springer, 2003. 226-228
[14]  Cheng Yun-Peng, Zhang Kai-Yuan, Xu Zhong. Matrix Theory. Xi'an: Press of Northwestern Polytechnical University, 2006, 94-106(程云鹏, 张凯院, 徐仲. 矩阵论. 西安: 西北工业大学出版社, 2006, 94-106)
[15]  Arasaratnam I, Haykin S, Thomas R H. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transaction on Signal Processing, 2010, 58(10): 2207-2218
[16]  Sun Yao, Zhang Qiang, Wan Lei. Small autonomous underwater vehicle navigation system based on adaptive UKF algorithm. Acta Automatica Sinica, 2011, 37(3): 343-354(孙尧, 张强, 万磊. 基于自适应UKF算法的小型水下机器人导航系统. 自动化学报, 2011, 37(3): 343-354)
[17]  Bernardo J M, Smith A F M. Bayesian Theory. Berlin: Springer-Verlag, 1994. 339-353
[18]  Budhiraja A, Chen L J, Lee C H. A survey of numerical methods for nonlinear filtering problems. Physica D: Nonlinear Phenomena, 2007, 230(1): 27-36
[19]  Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422
[20]  Chang L B, Hu B Q, Li A, Qin F J. Transformed unscented Kalman filter. IEEE Transactions on Automatic Control, 2013, 58(1): 252-257
[21]  Genz A, Keister B D. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics, 1996, 71(2): 299-309
[22]  Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proceedings of the IEEE, 2007, 95(5): 953-977
[23]  Gerstner T, Griebel M. Dimension-adaptive tensor-product quadrature. Computing, 2003, 71(1): 65-87
[24]  Jia B, Xin M, Cheng Y. Sparse Gaussian-Hermite quadrature filter with application to spacecraft attitude estimation. Journal of Guidance, Control and Dynamics, 2011, 27(2): 367-379
[25]  Wu Zong-Wei, Yao Min-Li, Ma Hong-Guang, Jia Wei-Min, Tian Fang-Hao. Sparse-grid square-root quadrature nonlinear filter. Acta Electronica Sinica, 2012, 40(7): 1298-1303(伍宗伟, 姚敏立, 马红光, 贾维敏, 田方浩. 稀疏网格平方根求积分非线性滤波器. 电子学报, 2012, 40(7): 1298-1303)
[26]  Griebel M, Holtz M. Dimension-wise integration of high-dimensional functions with applications to finance. Journal of Complexity, 2010, 26(5): 455-489
[27]  Zhao Y Z. On the use of dimension reduction techniques in quasi-Monte Carlo methods. Mathematical and Computer Modeling, 2008, 48(11-12): 1925-1937
[28]  Sarkka S. On unscented Kalman filtering for state estimation of continuos-time nonlinear systems. IEEE Transactions on Automatic Control, 2007, 52(9): 1631-1641

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133