Abbasian H, Nasersharif B, Akbari A, Rahmani M. Optimized linear discriminant analysis for extracting robust speech features. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing. St Julians: IEEE, 2008. 819-824
[2]
Nasersharif B, Akbari A. SNR-dependent compression of enhanced Mel sub-band energies for compensation of noise effects on MFCC features. Pattern Recognition Letters, 2011, 28(11): 1320-1326
[3]
Li Bi-Cheng, Shao Mei-Zhen, Huang Jie. Pattern Recognition Theory and Application. Xi'an: Xi'an University Press, 2008. 45-52 (李弼程, 邵美珍, 黄洁. 模式识别原理与应用. 西安: 西安电子科技大学出版社, 2008. 45-52)
[4]
Kumar N, Andreou A G. Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition. Speech Communication, 1998, 26(4): 283-297
[5]
Sakai M, Kitaoka N, Nakagawa S. Linear discriminant analysis using a generalized mean of class covariances and its application to speech recognition. IEICE Transactions on Information and Systems, 2008, E91-D(3): 478-487
[6]
Loog M, Duin R P W, Haeb-Umbach R. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(7): 762-766
[7]
Scott D W. Multivariate Density Estimation: Theory, Practice, and Visualization. New York: John Wiley and Sons, 1992. 125-190
[8]
Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion. The Annals of Statistics, 2010, 38(5): 2916-2957
[9]
Saon G, Padmanabhan M, Gopinath R, Chen S. Maximum likelihood discriminant feature spaces. In: Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Istanbul: IEEE, 2000, 2: 1129-1132
[10]
Lee H S, Chen B. Empirical error rate minimization based linear discriminant analysis. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China: IEEE, 2009. 1801-1804
[11]
Kenny P, Stafylakis T, Ouellet P. PLDA for speaker verification with utterances of arbitrary duration. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 7649-7653
[12]
Kanagasundaram A, Dean D, Vogt R. Weighted LDA techniques for I-vector based speaker verification. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan: IEEE, 2012. 4781-4784
[13]
Ye J X, Kobayashi T, Murakawa M. Kernel discriminant analysis for environmental sound recognition based on acoustic subspace. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 808-812
[14]
Senior A, Cho Y M, Weston J. Learning improved linear transforms for speech recognition. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan: IEEE, 2012. 1957-1960
[15]
Tomar V S, Rose R C. Efficient manifold learning for speech recognition using locality sensitive hashing. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 6995-6999
[16]
Heigold G, Ney H, Schluter R, Wiesler S. Discriminative training for automatic speech recognition. IEEE Signal Processing Magazine, 2012, 29(5): 58-69
[17]
Juang B H, Chou W, Lee C H. Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 1997, 5(3): 257-265
[18]
Biem A, Katagiri S, McDermott E, Juang B H. An application of discriminative feature extraction to filter-bank-based speech recognition. IEEE Transaction on Speech and Audio Processing, 2001, 9(2): 96-110
[19]
Ruske G, Faltlhauser R, Pfau T. Extended linear discriminative analysis (ELDA) for speech recognition. In: Proceedings of the 1998 ICSLP Sydney. Australia: ISCA, 1998. 1473-1476
[20]
Li X B, Li J Y, Wang R H. Dimensionality reduction using MCE-optimized LDA transformation. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech and Signal Processing. Quebec, Canada: IEEE, 2004, 1: 137-140
[21]
Chengalvarayan R, Deng L. Use of generalized dynamic feature parameters for speech recognition. IEEE Transactions on Speech and Audio Processing, 1997, 5(3): 232-242
[22]
Wang Jun, Wang Shi-Tong, Deng Zhao-Hong, Ying Wen-Hao. Fast kernel density estimator based image thresholding algorithm for small target images. Acta Automatica Sinica, 2012, 38(10): 1679-1689(王骏, 王士同, 邓赵红, 应文豪. 面向小目标图像的快速核密度估计图像阈值分割算法. 自动化学报, 2012, 38(10): 1679-1689)
[23]
Simonoff J S. Smoothing Methods in Statistics. New York: Springer-Verlag, 1996. 53-64