全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于LocalJet结构的全局图像特征构造方法

DOI: 10.3724/SP.J.1004.2014.01148, PP. 1148-1155

Keywords: 多尺度自卷积,仿射变换,LocalJet结构,不变量

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出一种鲁棒的特征描述符MSALJS(Multi-ScaleAutoconvolutiononLocalJetStructure),该描述符对仿射变换具有近似不变性.MSALJS是一种全局图像特征描述符,它基于描述图像局部结构的微分进行多尺度自卷积矩计算.实验结果表明,MSALJS能适用于目标识别实际应用时图像发生部分遮挡、视角变化等变形情形.

References

[1]  Lan R, Yang Jian-Wei, Jiang Yong, Song Zhan, Tang Yuan-Yan. An affine invariant discriminate analysis with canonical correlation analysis. Neurocomputing, 2012, 86(1): 184-192
[2]  Morel JM, Yu Guo-Shen. ASIFT: a new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469
[3]  Cui Chun-Hui, Ngan K N. Scale-and affine-invariant fan feature. IEEE Transactions on Image Processing, 2011, 20(6): 1627-1640
[4]  Ferraz L, Binefa X. A sparse curvature-based detector of affine invariant blobs. Journal of Computer Vision and Image Understanding, 2012, 116(4): 524-537
[5]  Koenderink J J. The structure of images. Biological Cybernetics, 1984, 50(5): 363-370
[6]  Koenderink J J, van Doorn A J. Representation of local geometry in the visual system. Biological Cybernetics, 1987, 55(6): 367-375
[7]  Florack L M J, Romeny B M, Koenderink J J, Viergever M. General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision, 1994, 4(2): 171-187
[8]  Koenderink J J, van Doorn A. The structure of visual spaces. Journal of Math Imaging Vision, 2008, 31(2-3): 171-187
[9]  Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[10]  Kadyrov A, Petrou M. The trace transform and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 811-828
[11]  Geusebroek J M, Burghouts G J, Smeulders A W M. The Amsterdam library of object images. International Journal of Computer Vision, 2005, 61(1): 103-112
[12]  Hu M. Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory, 1962, 8(2): 179-187
[13]  Farokhi S, Shamsuddin S M, Flusser J, Sheikh U U, Khansari M, Jafari-Khouzani K. Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis. Journal of Electronic Imaging, 2013, 22(1): 1-11
[14]  Flusser J. Pattern recognition by affine moment invariants. Pattern Recognition, 1993, 26(1): 167-174
[15]  Tomas S, Flusser J. Affine moment invariants generated by graph method. Pattern Recognition, 2011, 44(9): 2047-2056
[16]  Tomas S, Flusser J. Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognition, 2003, 36(12): 2895-2907
[17]  Rahtu E, Salo M, Heikkila J. Affine invariant pattern recognition using multi-scale autoconvolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 908-918
[18]  Lindeberg T. Scale selection properties of generalized scale-space interest point detectors. Journal of Mathematical Imaging and Vision, 2013, 46(2): 177-210
[19]  Baumberg A. Reliable feature matching across widely separated views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina, USA: IEEE, 2000. 774-781
[20]  Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. International Journal of Computer Vision, 2004, 60(1): 63-86

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133