全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于泡沫图像特征的浮选槽液位智能优化设定方法

DOI: 10.3724/SP.J.1004.2014.01086, PP. 1086-1097

Keywords: 浮选液位,泡沫特征,案例推理,品位预测,BP神经网络模糊推理,优化设定

Full-Text   Cite this paper   Add to My Lib

Abstract:

?浮选生产过程中浮选槽液位通常根据经验人工设定,具有主观随意性﹑液位波动大,使精/尾矿品位不满足要求.为此,提出一种基于浮选泡沫图像多特征的浮选槽液位智能优化设定的方法.在浮选槽工作原理以及液位与泡沫图像特征间关系的分析基础上,将基于案例推理的浮选槽液位预设定﹑基于多泡沫图像特征的改进LS-SVM(Leastsquaressupportvectormachine)品位预测及基于BP神经网络的自学习模糊推理智能补偿等模型有机集成,提出了充分利用泡沫图像特征的液位智能优化设定方法.将该方法在某铝土矿浮选生产过程进行应用验证,可使粗选槽液位波动减小,提高了粗选精/尾矿品位合格率、总精矿品位合格率及回收率.

References

[1]  Niu Fu-Sheng, Liu Rui-Qin, Zheng Wei-Min, Yan Man-Zhi. 600 Asks of Mineral Processing Knowledge. Beijing: Metallurgical Industry Press, 2008. 9-13(牛福生, 刘瑞芹, 郑为民, 闫满志. 选矿知识600问. 北京: 冶金工业出版社, 2008. 9-13)
[2]  Nakhaeie F, Sam A, Mosavi M R. Concentrate grade prediction in an industrial flotation column using artificial neural network. Arabian Journal for Science and Engineering, 2013, 38(5): 1011-1023
[3]  Bergh L G, Yianatos J. The long way towards multivariate predictive control of flotation processes. Journal of Process Control, 2011, 21(2): 226-234
[4]  Kampjarvi P, Jamsa-Jounela S L. Level control strategies for flotation cells. Minerals Engineering, 2003, 16(11): 1061-1068
[5]  Maldonado M, Desbiens A, Del Villar R. Potential use of model predictive control for optimizing the column flotation process. International Journal of Mineral Processing, 2009, 93(1): 26-33
[6]  Bouchard J, Desbiens A, Del Villar R. Recent advances in bias and froth depth control in flotation columns. Minerals Engineering, 2005, 18(7): 709-720
[7]  Wang He, Li Ying-Gen, Wang Huan-Gang, Xu Wen-Li. A design of feed-forward control for flotation cell level. Non-Ferrous Metals (Mineral Processing), 2010, (6): 41-44(王赫, 李映根, 王焕钢, 徐文立. 串级浮选槽液位的前馈控制设计方法. 有色金属(选矿部分), 2010, (6): 41-44)
[8]  Liu J J, MacGregor J F. Froth-based modeling and control of flotation processes. Minerals Engineering, 2008, 21(9): 642-651
[9]  Nunez F, Cipriano A. Visual information model based predictor for froth speed control in flotation process. Minerals Engineering, 2009, 22(4): 366-371
[10]  Cao Bin-Fang, Xie Yong-Fang, Gui Wei-Hua, Wei Li-Jun, Yang Chun-Hua. Integrated prediction model of bauxite concentrate grade based on distributed machine vision. Minerals Engineering, 2013, 53: 31-38
[11]  Marais C, Aldrich C. Estimation of platinum flotation grades from froth image data. Minerals Engineering, 2011, 24(5): 433-441
[12]  Bartolacci G, Pelletier P, Tessier J, Duchense C, Bosse P, Founier J. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes, Part I: Flotation control based on froth textural characteristics. Minerals Engineering, 2006, 19(6-8): 737-747
[13]  Ata S. Phenomena in the froth phase of flotation: a review. International Journal of Mineral Processing, 2012, 102-103: 1-12
[14]  Aldrich C, Marais C, Shean B J, Cilliers J J. Online monitoring and control of froth flotation systems with machine vision: a review. International Journal of Mineral Processing, 2010, 96(4): 1-13
[15]  Behbahani M, Saghaee A, Noorossana R. A case-based reasoning system development for statistical process control: case representation and retrieval. Computers and Industrial Engineering, 2012, 63(4): 1107-1117
[16]  Pian Jin-Xiang, Chai Tian-You, Li Jie-Jia. Application of case-based reasoning and iterative learning to laminar cooling process control. Acta Automatica Sinica, 2012, 38(12): 2032-2037(片锦香, 柴天佑, 李界家. 案例推理及迭代学习在层流冷却控制中的应用. 自动化学报, 2012, 38(12): 2032-2037)
[17]  Nakhaei F, Mosavi M R, Sam A, Vaghei Y. Recovery and grade accurate prediction of pilot plant flotation column concentrate: neural network and statistical techniques. International Journal of Mineral Processing, 2012, 110(7): 140-154
[18]  Wang Yao-Nan, Yuan Xiao-Fang. SVM Approximate-based internal model control strategy. Acta Automatica Sinica, 2008, 34(2): 172-179(王耀南, 袁小芳. 基于支持向量机逼近的内模控制系统及应用. 自动化学报, 2008, 34(2): 172-179)
[19]  Zhou Kai-Jun, Yang Chun-Hua, Mu Xue-Min, Gui Wei-Hua. Flotation recovery prediction based on froth features and LS-SVM. Chinese Journal of Scientific Instrument, 2009, 30(6): 1295-1300(周开军, 阳春华, 牟学民, 桂卫华. 基于泡沫特征与LS-SVM的浮选回收率预测. 仪器仪表学报, 2009, 30(6): 1295-1300)
[20]  Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang, Tang Zhao-Hui. Bubble Image Processing and Process Monitoring techniques of Mineral Flotation. Changsha: Central South University Press, 2013. 95-142(桂卫华, 阳春华, 谢永芳, 唐朝晖. 矿物浮选泡沫图像处理与过程监测技术. 长沙: 中南大学出版社, 2013. 95-142)
[21]  Yang Chun-Hua, Zhou Kai-Jun, Mu Xue-Min, Gui Wei-Hua. Froth color and size measurement method for flotation based on computer vision. Chinese Journal of Scientific Instrument, 2009, 30(4): 717-721(阳春华, 周开军, 牟学民, 桂卫华. 基于计算机视觉的浮选泡沫颜色及尺寸测量方法. 仪器仪表学报, 2009, 30(4): 717-721)
[22]  Liu Wen-Li, Lu Mai-Xi, Wang Fan, Wang Yong. Extraction of textural feature and recognition of coal flotation froth. Journal of Chemical Industry and Engineering (China), 2003, 54(6): 830-835(刘文礼, 路迈西, 王凡, 王勇. 煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别. 化工学报, 2003, 54(6): 830-835)
[23]  Gui Wei-Hua, Yang Chun-Hua, Xu De-Gang, Lu Ming, Xie Yong-Fang. Machine-vision-based online measuring and controlling technologies for mineral flotation: a review. Acta Automatica Sinica, 2013, 39(11): 1879-1888(桂卫华, 阳春华, 徐德刚, 卢明, 谢永芳. 基于机器视觉的矿物浮选过程监控技术研究进展. 自动化学报, 2013, 39(11): 1879-1888)
[24]  Geng Zeng-Xian, Chai Tian-You. Intelligently optimal index setting for flotation process by CBR. Journal of Northeastern University (Natural Science), 2008, 29(6): 761-764(耿增显, 柴天佑. 基于案例推理的浮选过程智能优化设定. 东北大学学报(自然科学版), 2008, 29(6): 761-764)
[25]  Li H B, Chai T Y, Zhang L Y. Hybrid intelligent optimal control for flotation processes. In: Proceedings of the 2012 American Control Conference (ACC). Montreal, Canada: IEEE, 2012. 4891-4896
[26]  Jiang Yi-Zhang, Deng Zhao-Hong, Wang Shi-Tong. Mamdani-larsen type transfer learning fuzzy system. Acta Automatica Sinica, 2012, 38(9): 1393-1409(蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统. 自动化学报, 2012, 38(9): 1393-1409)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133