全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向按需供给的资源需求滤波估算方法

DOI: 10.3724/SP.J.1004.2014.00942, PP. 942-951

Keywords: 按需供给,资源需求,滤波,估算

Full-Text   Cite this paper   Add to My Lib

Abstract:

?随着按需供给资源使用模式的推广,软件的资源需求已成为资源优化控制的重要属性.监测和估算是目前常用的资源消耗获取方法,但监测工具难以在运行时准确度量短任务的资源需求,回归分析方法又因受到多元共线性和不确定性因素的影响,导致其取值精度下降.本文提出了一种基于Kalman滤波的资源需求估算方法.该方法建立了可度量属性集与不可度量的资源需求间的关联,并利用滤波过滤度量过程中的噪声,达到降低估算误差的目的.基准测试的结果表明,通过合理的设置滤波参数,本方法能够快速逼近真实值,且平均误差小于8%.

References

[1]  Kalbasi A, Krishnamurthy D, Rolia J, Dawson S. DEC: service demand estimation with confidence. IEEE Transactions on Software Engineering, 2012, 38(3): 561-578
[2]  Teunissen P J G, Khodabandeh A. BLUE, BLUP and the Kalman filter: some new results. Journal of Geodesy, 2013, 87(5): 461-473
[3]  You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2): 101-118(游科友, 谢立华. 网络控制系统的最新研究综述. 自动化学报, 2013, 39(2): 101-118)
[4]  QoS Oriented B2C Benchmark for Internet Middleware [Online], available: http://forge.ow2.org/projects/jaspte/, September 3, 2013
[5]  Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35-45
[6]  Tao Gui-Li, Deng Zi-Li. Self-tuning fusion Kalman filter with unknown parameters and its convergence. Acta Automatica Sinica, 2012, 38(1): 109-119(陶贵丽, 邓自立. 含未知参数的自校正融合Kalman滤波器及其收敛性. 自动化学报, 2012, 38(1): 109-119)
[7]  Lazowska E D, Zahorjan J, Graham G S, Sevcik K C. Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Upper Saddle River, NJ, USA: Prentice-Hall, 1984
[8]  Hou Zhen-Wei, Fang Hai-Tao. L 2-stability of discrete-time Kalman filter with random coefficients under incorrect covariance. Acta Automatica Sinica, 2013, 39(1): 43-52(周振威, 方海涛. 在不准确方差下带随机系数矩阵的卡尔曼滤波稳定性. 自动化学报, 2013, 39(1): 43-52)
[9]  Rao J, Wei Y D, Gong J Y, Xu C Z. QoS guarantees and service differentiation for dynamic cloud applications. IEEE Transactions on Network and Service Management, 2013, 10(1): 43-55
[10]  Malek O, Venetsanopoulos A, Alamgir L, Alirezaie J, Krishnan S. A discrete-time convergence model for proliferation-able stem cell and its estimation using Kalman filter. Journal of Bioengineer and Biomedical Sciences, 2013, 3(1): 1-10
[11]  You K Y, Xie L H. Kalman filtering with scheduled measurements. IEEE Transactions on Signal Processing, 2013, 61(6): 1520-1530
[12]  Load Balancing for EJBs and RMI Objects [Online], available: http://~docs.oracle.com/cd/E13222_01/wls/docs90/cluster/~load_balancing.html, September 3, 2013
[13]  Product Overview——Software and IT Management Products [Online], available: http://~www.quest.com/jprobe/, September 3, 2013
[14]  Simon Spinner. Evaluating Approaches to Resource Demand Estimation [Master dissertation], University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association, Germany, 2011
[15]  Bard Y, Shatzoff M. Statistical methods in computer performance analysis. Current Trends in Programming Methodology. New Jersey: Prentice-Hall, 1978, 3: 1-51
[16]  Han R, Guo L, Ghanem M M, Guo Y K. Lightweight resource scaling for cloud applications. In: Proceedings of the 2012 Cluster, Cloud and Grid Computing. Ottawa, CA: IEEE, 2012, 644-651
[17]  Pacifici G, Segmuller W, Spreitzer M, Tantawi A. CPU demand for web serving: measurement analysis and dynamic estimation. Performance Evaluation, 2008, 65(6-7): 531-553
[18]  Rolia J, Vetland V. Parameter estimation for performance models of distributed application systems. In: Proceedings of the 1995 Centre for Advanced Studies on Collaborative Research Conference. Toronto, CA: ACM, 1995. 54-63
[19]  Rolia J, Kalbasi A, Krishnamurthy D, Dawson S. Resource demand modeling for multi-tier services. In: Proceedings of the 1st joint WOSP/SIPEW International Conference on Performance Engineering. New York, USA: ACM, 2010. 207-216
[20]  Kraft S, Pacheco-Sanchez S, Casale G, Dawson S. Estimating service resource consumption from response time measurements. In: Proceedings of the 2009 Performance Evaluation Methodologies and Tools. Coleraine, UK: ACM, 2009, 1-10
[21]  Menasce D. Computing missing service demand parameters for performance models. In: Proceedings of the 2008 Computer Measurement Group. Las Vegas, USA: CiteSeer, 2008. 241-248
[22]  Zheng T, Woodside M. Performance model estimation and tracking using optimal filters. IEEE Transactions on Software Engineering, 2008, 34(3): 391-406
[23]  Woodside M, Zhen T, Litoiu M. Service system resource management based on a tracked layered performance model. In: Proceedings of the 2006 International Conference on Autonomic Computing. Washington, USA: IEEE, 2006. 175-184
[24]  Sun X. Estimating Resource Demands for Application Services [Master dissertation], Carleton University, Canada, 1999
[25]  Lu Y, Abdelzaher T, Lu C Y, Sha L, Liu X. Feedback control with queueing-theoretic prediction for relative delay guarantees in Web servers. In: Proceedings of the 2003 Real Time and Embedded Technology and Applications Symposium. Toronto, Canada: IEEE, 2003. 208-217
[26]  JVM Tool Interface (JVMTI) [Online], available: http://~java.sun.com/j2se/1.5.0/docs/guide/jvmti/, September 3, 2013
[27]  Jordan M, Czajkowski G, Kouklinski K, Skinner G. Extending a J2EE server with dynamic and flexible resource management. In: Proceedings of the 2004 International Conference on Middleware. Toronto, Canada: ACM, 2004. 439-458
[28]  Binder W, Hulaas J. A portable CPU-management framework for Java. IEEE Internet Computing, 2004, 8(5): 74-83
[29]  Hulaas J, Kalas D. Monitoring of resource consumption in Java-based application servers. In: Proceedings of OpenView University Association 10th Workshop. Geneva, Switzerland: University of Geneva, 2003. 1-6
[30]  Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adaptive resource provisioning in the cloud. Future Generation Computer Systems, 2012, 28(1): 155-162
[31]  A Transactional Web e-Commerce Benchmark [Online], available: http://www.tpc.org/tpcw/default.asp, September 3, 2013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133