Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351
[2]
Meyer F G, Coifman R R. Brushlets: a tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, 1997, 4(2): 147-187
[3]
Le Pennec E, Mallat S. Sparse geometric image representations with Bandelets. IEEE Transactions on Image Processing, 2005, 14(4): 423-438
[4]
Velisavljevic V, Beferull-Lozano B, Vetterli M, Dragotti P L. Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933
[5]
Candés E J. Ridgelets: Theory and Application [Ph.D. dissertation], Stanford University, Stanford CA, 1998
[6]
Candés E J, Donoho D L. Curvelets——a surprisingly effective nonadaptive representation for objects with edges. Curves and Surfaces, Nashville, TN: Vanderbilt University Press, 2000. 105-120
[7]
Strack J L, Candés E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing, 2002, 11(6): 670-684
[8]
Candés E J, Demanet L, Donoho D L, Ying L X. Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 2006, 5(3): 861-899
[9]
Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106
[10]
Do M N. Directional Multiresolution Image Representations [Ph.D. dissertation], Lausanne Federal Polytechnic School, Lausanne, Swiss, 2001
[11]
da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101
[12]
Zhou H F, Wang X T, Xu X G. Image denoising using Gaussian scale mixture model in the nonsubsampled contourlet domain. Journal of Electronics and Information Technology, 2009, 31(8): 1796-1800
[13]
Feng H X, Hou B, Jiao L C, Bu X M. SAR image despeckling based on local Gaussian model and MAP in NSCT domain. Acta Electronica Sinica, 2010, 38(4): 811-816
[14]
Qu X B, Yan J W, Xiao H Z, Zhu Z Q. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica, 2008, 34(12): 1508-1514
[15]
Li T J, Wang Y Y. Biological image fusion using a NSCT based variable-weight method. Information Fusion, 2011, 12(2): 85-92
[16]
Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: theory and design. IEEE Transactions on Signal Processing, 1992, 40(4): 882-893
[17]
Chen Y, Adams M D, Lu W S. Design of optimal quincunx filter banks for image coding. Journal on Advances in Signal Processing, 2007, 2007: 083858
[18]
Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200
[19]
Tran T D, de Queiroz R L, Nguyen T Q. Linear-phase perfect reconstruction filter bank: lattice structure, design, and application in image coding. IEEE Transactions on Signal Processing, 2000, 48(1): 133-147