全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非下采样轮廓波变换快速算法

DOI: 10.3724/SP.J.1004.2014.00757, PP. 757-762

Keywords: 方向滤波器,快速算法,多尺度几何分析,非下采样轮廓波变换(NSCT)

Full-Text   Cite this paper   Add to My Lib

Abstract:

?多尺度几何分析(MGA)是一种有效的图像处理方法.作为MGA的一种离散实现方法,非下采样轮廓波变换(NSCT)被广泛应用于图像去噪、图像融合、图像增强、特征提取等领域.然而,由于该变换的高冗余性,其计算效率受到一定限制.因此,对NSCT快速算法的研究具有现实意义.本文采用一种优化的方向滤波器改进了原NSCT变换,以损失部分重建图像质量为代价,获得算法处理速度的显著提高.实验结果可见,在满足重建图像主观质量视觉要求的前提下,算法速度可比原变换提高若干倍.图像去噪实验进一步验证了算法的可靠性及效率.

References

[1]  Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351
[2]  Meyer F G, Coifman R R. Brushlets: a tool for directional image analysis and image compression. Applied and Computational Harmonic Analysis, 1997, 4(2): 147-187
[3]  Le Pennec E, Mallat S. Sparse geometric image representations with Bandelets. IEEE Transactions on Image Processing, 2005, 14(4): 423-438
[4]  Velisavljevic V, Beferull-Lozano B, Vetterli M, Dragotti P L. Directionlets: anisotropic multidirectional representation with separable filtering. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933
[5]  Candés E J. Ridgelets: Theory and Application [Ph.D. dissertation], Stanford University, Stanford CA, 1998
[6]  Candés E J, Donoho D L. Curvelets——a surprisingly effective nonadaptive representation for objects with edges. Curves and Surfaces, Nashville, TN: Vanderbilt University Press, 2000. 105-120
[7]  Strack J L, Candés E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing, 2002, 11(6): 670-684
[8]  Candés E J, Demanet L, Donoho D L, Ying L X. Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 2006, 5(3): 861-899
[9]  Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106
[10]  Do M N. Directional Multiresolution Image Representations [Ph.D. dissertation], Lausanne Federal Polytechnic School, Lausanne, Swiss, 2001
[11]  da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101
[12]  Zhou H F, Wang X T, Xu X G. Image denoising using Gaussian scale mixture model in the nonsubsampled contourlet domain. Journal of Electronics and Information Technology, 2009, 31(8): 1796-1800
[13]  Feng H X, Hou B, Jiao L C, Bu X M. SAR image despeckling based on local Gaussian model and MAP in NSCT domain. Acta Electronica Sinica, 2010, 38(4): 811-816
[14]  Qu X B, Yan J W, Xiao H Z, Zhu Z Q. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica, 2008, 34(12): 1508-1514
[15]  Li T J, Wang Y Y. Biological image fusion using a NSCT based variable-weight method. Information Fusion, 2011, 12(2): 85-92
[16]  Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: theory and design. IEEE Transactions on Signal Processing, 1992, 40(4): 882-893
[17]  Chen Y, Adams M D, Lu W S. Design of optimal quincunx filter banks for image coding. Journal on Advances in Signal Processing, 2007, 2007: 083858
[18]  Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200
[19]  Tran T D, de Queiroz R L, Nguyen T Q. Linear-phase perfect reconstruction filter bank: lattice structure, design, and application in image coding. IEEE Transactions on Signal Processing, 2000, 48(1): 133-147

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133