全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

雾霾天气下可见光图像场景再现

DOI: 10.3724/SP.J.1004.2014.00744, PP. 744-750

Keywords: 图像去雾,场景再现,二次规划,大气散射模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了再现雾霾天气下可见光图像的清晰场景,有效抑制雾霾退化造成的对比度、清晰度下降,提出了单色大气散射模型新的求解方法.首先,将单色大气散射模型类比Retinex模型,重新解释了大气传递图;依据大气传递图的先验知识和几点假设,建立目标函数的变分模型,将大气传递图的估计问题转化为二次规划问题.通过带约束的归一化最速下降法获取最优解,并采用多分辨率技术加速计算;在HSI空间的亮度分量上反解单色大气散射模型,得到反射图像,并依据大气传递图自适应校正饱和度分量.实验结果表明,新算法可有效去除雾霾,再现真实场景的对比度和清晰度,同现有去雾算法相比,本文算法取得了相似甚至更好的去雾效果.

References

[1]  Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): 1-9
[2]  Tan R T. Visibility in bad weather from a single image. In: Proceedings of 26th IEEE Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008. 1-8
[3]  He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In: Proceedings of 27th IEEE Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 1956-1963
[4]  Fang Shuai, Wang Yong, Cao Yang, Zhan Ji-Qing, Rao Rui-Zhong. Restoration of image degraded by haze. Acta Electronica Sinica, 2010, 38(10): 2279-2284(方帅, 王勇, 曹洋, 占吉清, 饶瑞忠. 单幅雾天图像复原. 电子学报, 2010, 38(10): 2279-2284)
[5]  Yu Jing, Li Da-Peng, Liao Qing-Min. Physics-based fast single image fog removal. Acta Automatica Sinica, 2011, 37(2): 143-149(禹晶, 李大鹏, 廖庆敏. 基于物理模型的快速单幅图像去雾方法. 自动化学报, 2011, 37(2): 143-149)
[6]  Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208
[7]  Kratz L, Nishino K. Factorizing scene albedo and depth from a single foggy image. In: Proceedings of the IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1701-1708
[8]  Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 1997, 6(7): 965-976
[9]  Kimmel R, Elad M, Shaked D, Keshet R, Sobel I. A variational framework for retinex. International Journal of Computer Vision, 2003, 52(1): 7-23
[10]  Lei L, Zhou Y Q, Li J W. An investigation of retinex algorithms for image enhancement. Journal of Electron (China), 2007, 24(5): 696-700
[11]  Yu Jing, Li Da-Peng, Liao Qing-Min. Color constancy based visibility enhancement of color image in low-light conditions. Acta Automatica Sinica, 2011, 37(8): 923-931(禹晶, 李大鹏, 廖庆敏. 基于颜色恒常性的低照度图像视见度增强. 自动化学报, 2011, 37(8): 923-931)
[12]  Rizzi A, Gatta C, Marini D. A new algorithm for unsupervised global and local color correction. Pattern Recognition Letters, 2003, 24(11): 1663-1677
[13]  Rizzi A, Gatta C, Marini D. From Retinex to automatic color equalization: issues in developing a new algorithm for unsupervised color equalization. Journal of Electronic Imaging, 2004, 13(1): 75-84
[14]  Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724
[15]  Li Quan-He, Bi Du-Yan, He Lin-Yuan. Degradation process simulation model and its use in image enhancement. Journal of Xidian University, 2011, 6(8): 185-192(李权合, 毕笃彦, 何林远. 退化过程模拟模型及其在图像增强中的应用. 西电学报, 2011, 6(8): 185-192)
[16]  Gao Xue-Ni, Yu Zhen-Ming, Zhang Jun, Li Tao-Shen. Multi-focus image fusion based on multi-level and iterative method. Acta Electronica Sinica, 2011, 39(3): 690-694(高雪妮, 玉振明, 张军, 李陶深. 基于多级分块迭代法的不同聚焦图像融合. 电子学报, 2011, 39(3): 690-694)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133