全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多尺度结构自相似性的单幅图像超分辨率算法

DOI: 10.3724/SP.J.1004.2014.00594, PP. 594-603

Keywords: 超分辨率,结构自相似性,多尺度,压缩感知,非局部方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Superresolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率.

References

[1]  Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659
[2]  Babacan S D, Molina R, Katsaggelos A K. Total variation super resolution using a variational approach. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE, 2008. 641-644
[3]  Sen P, Darabi S. Compressive image super-resolution. In: Proceedings of the 43rd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2009. 1235-1242
[4]  Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873
[5]  Yang S Y, Sun F H, Wang M, Liu Z Z, Jiao L C. Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning. In: Proceedings of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping. Xiamen, China: IEEE, 2011. 1-6
[6]  Protter M, Elad M, Takeda H, Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51
[7]  Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Non-local sparse models for image restoration. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2272-2279
[8]  Suetake N, Sakano M, Uchino E. Image super-resolution based on local self-similarity. Optical Review, 2008, 15(1): 26-30
[9]  Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 349-356
[10]  Dong W S, Zhang L, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857
[11]  Pan Zong-Xu, Huang Hui-Juan, Yu Jing, Hu Shao-Xing, Zhang Ai-Wu, Ma Hong-Bing, Sun Wei-Dong. Super-resolution method based on CS and structural self-similarity for remote sensing images. Signal Processing, 2012, 28(6): 859-872 (潘宗序, 黄慧娟, 禹晶, 胡少兴, 张爱武, 马洪兵, 孙卫东. 基于压缩感知与结构自相似性的遥感图像超分辨率方法. 信号处理, 2012, 28(6): 859-872)
[12]  Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457
[13]  Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
[14]  Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745
[15]  Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010, 17(5): 513-516
[16]  Marziliano P, Dufaux F, Winkler S, Ebrahimi T. A no-reference perceptual blur metric. In: Proceedings of the 2002 International Conference on Image Processing. Rochester, USA: IEEE, 2002. III-57-III-60

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133