Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research, 2010, 49(17): 7849-7857
[2]
Cremers D, Kohlberger T, Schn?rr C. Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 2003, 36(9): 1929-1943
[3]
Ding M T, Tian Z, Xu H X. Adaptive kernel principal component analysis. Signal Processing, 2010, 90(5): 1542-1553
[4]
Nguyen V H, Golinval J C. Fault detection based on kernel principal component analysis. Engineering Structures, 2010, 32(11): 3683-3691
[5]
Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59(24): 5897-5908
[6]
Liu X Q, Kruger U, Littler T, Xie L, Wang S Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometrics and Intelligent Laboratory Systems, 2009, 96(2): 132-143
[7]
Zhang Y W, Li S, Hu Z Y, Song C H. Dynamical process monitoring using dynamical hierarchical kernel partial least squares. Chemometrics and Intelligent Laboratory Systems, 2012, 118: 150-158
[8]
Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45(7): 1593-1600
[9]
Li G, Qin S J, Ji Y D, Zhou D H. Reconstruction based fault prognosis for continuous processes. Control Engineering Practice, 2010, 18(10): 1211-1219
[10]
Mika S, Sch?lkopf B, Smola A, Müller K R, Scholz M, R?tsch G. Kernel PCA and de-noising in feature spaces. In: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II. Cambridge, MA, USA: MIT Press, 1999. 536-542
[11]
Sch?lkopf B, Mika S, Burges C J C, Knirsch P, Muller K, Ratsch G, Smola A J. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 1999, 10(5): 1000-1017
[12]
Müler K R, Mika S, R?sch G, Tsuda K, Sch?kopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201
[13]
Peng K X, Zhang K, Li G, Zhou D H. Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control Engineering Practice, 2013, 21(4): 360-369
[14]
Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 593-597
[15]
Baffi G, Martin E B, Morris A J. Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Computers and Chemical Engineering, 1999, 23(3): 395-411
[16]
Kruger U, Wang X, Chen Q, Qin S J. An alternative PLS algorithm for the monitoring of industrial process. In: Proceedings of the 2001 American Control Conference. Arlington, VA, USA: IEEE, 2001. 4455-4459
[17]
Li G, Qin S Z, Ji Y D, Zhou D H. Total PLS based contribution plots for fault diagnosis. Acta Automatica Sinica, 2009, 35(6): 759-765
[18]
Liu J L. Fault diagnosis using contribution plots without smearing effect on non-faulty variables. Journal of Process Control, 2012, 22(9): 1609-1623
[19]
Zhou Dong-Hua, Wei Mu-Heng, Si Xiao-Sheng. A survey on anomaly detection, life prediction and maintenance decision for industrial processes. Acta Automatica Sinica, 2013, 39(6): 711-722 (in Chinese)
[20]
Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2): 496-504
[21]
Cho J H, Lee J M, Choi S W, Lee D K, Lee I B. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science, 2005, 60(1): 279-288
[22]
Choi S W, Morris J, Lee I B. Nonlinear multiscale modelling for fault detection and identification. Chemical Engineering Science, 2008, 63(8): 2252-2266
[23]
Rakotomamonjy A. Variable selection using SVM-based criteria. Journal of Machine Learning Research, 2003, 3: 1357-1370
[24]
Choi S W, Lee C Y, Lee J M, Park J H, Lee I B. Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1): 55-67
[25]
Qin S J. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003, 17(8-9): 480-512
[26]
Yin S, Ding S X, Abandan Sari H A, Hao H Y, Zhang P Y. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 2012, 22(9): 1567-1581
[27]
Yin S, Ding S X, Haghani A, Hao H Y. Data-driven monitoring for stochastic systems and its application on batch process. International Journal of Systems Science, 2013, 44(7): 1366-1376