全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非齐次高阶非线性系统的连续反馈控制设计

DOI: 10.3724/SP.J.1004.2014.00149, PP. 149-155

Keywords: 连续状态反馈,高阶非线性系统,全局强稳定,反推方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了一类非齐次的高阶非线性系统的连续状态反馈控制设计问题.通过定义一列适当的辅助函数,放宽了对非线性项的约束条件.利用传统的积分反推技术,并增加一个积分项的方法,得到了这类系统的稳定性,给出了控制器的设计方法,并通过一个例子验证了本文的理论结果.

References

[1]  Krsti? M, Kanellakopoulos I, Kokotovi? P V. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995. 29-32
[2]  Liu Y G, Pan Z G, Shi S J. Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Transactions on Automatic Control, 2003, 48(3): 509-513
[3]  Liu Y G, Zhang J F. Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems. Science in China Series F Information Sciences, 2004, 47(4): 527-544
[4]  Sontag E D. Feedback stabilization of nonlinear systems. Robust Control of Linear Systems and Nonlinear Control. Boston: Birkh?user, 1990. 61-81
[5]  Xie X J, Tian J. Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, 2009, 45(1): 126-133
[6]  Sun Z Y, Liu Y G. Adaptive stabilisation for a large class of high-order uncertain non-linear systems. International Journal of Control, 2009, 82(7): 1275-1287
[7]  Sun Z Y, Liu Y G, Xie X J. Global stabilization for a class of high-order time-delay nonlinear systems. International Journal of Innovative Computing, Information and Control, 2011, 7(12): 7119-7130
[8]  Lin W, Qian C J. Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Transactions on Automatic Control, 2002, 47(5): 757-774
[9]  Qian C J, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079
[10]  Sun Z Y, Liu Y G. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems. Automatica, 2007, 43(10): 1772-1783
[11]  Zhang J, Liu Y G. A new approach to adaptive control design without overparametrization for a class of uncertain nonlinear systems. Science China (Series E): Information Sciences, 2011, 54(7): 1419-1429
[12]  Sun Z, Liu Y. Adaptive practical output tracking control for high-order nonlinear uncertain systems. Acta Automatica Sinica, 2008, 34(8): 984-988
[13]  Sun Zong-Yao, Liu Yun-Gang. Stabilizing control design for a class of high-order nonlinear systems with unknown but identical control coefficients. Acta Automatica Sinica, 2007, 33(3): 331-334(孙宗耀, 刘允刚. 一类控制系数未知但等同高阶非线性系统的稳定控制设计. 自动化学报, 2007, 33(3): 331-334)
[14]  Sun Zong-Yao, Sun Wei, Liu Zhen-Guo. Adaptive control design of high-order nonlinear systems with unknown control coefficients and zero dynamics. Acta Automatica Sinica, 2012, 38(6): 1025-1032(孙宗耀, 孙伟, 刘振国. 有未知控制系数和零动态的高阶非线性系统的自适应控制设计. 自动化学报, 2012, 38(6): 1025-1032)
[15]  Kurzweil J. On the inversion of Lyapunov's second theorem on stability of motion. American Mathematical Society Translations, 1956, 24: 19-77
[16]  Qian C J, Lin W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. System and Control Letters, 2001, 42(3): 185-200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133