全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有时延的非线性网络控制系统可靠模糊控制

DOI: 10.3724/SP.J.1004.2012.01091, PP. 1091-1099

Keywords: 网络控制系统,可靠模糊控制,Takagi-Sugeno(T-S)模糊模型,线性矩阵不等式(LMI),网络诱导时延,数据包丢失

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了带有状态时延及执行器故障的非线性网络控制系统的可靠模糊控制问题.利用输入时延方法,将带有网络诱导时延和数据包丢失的非线性网络控制系统等价的转化为具有时变时延的Takagi-Sugeno(T-S)模糊系统.时延对象的状态信息,采用时滞分解方法,得以充分的考虑.并利用锥补线性化迭代算法,将非凸的稳定性条件转化成可行的线性矩阵不等式(LMI)的形式.文中将更紧的界处理方法(相互凸组合技术)与不相关增广矩阵项引入到Lyapunov函数的处理当中,获得保守性更小的稳定性条件.数值算例验证了该方法的有效性.

References

[1]  Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(1): 84-99
[2]  Yang T C. Networked control system: a brief survey. IEE Proceedings--Control Theory and Applications, 2006, 153(4): 403-412
[3]  Fang H J, Ye H, Zhong M Y. Fault diagnosis of networked control systems. Annual Reviews in Control, 2007, 31(1): 55-68
[4]  Peng C, Yang T C, Tian E G. Robust fault-tolerant control of networked control systems with stochastic actuator failure. IET Control Theory and Applications, 2010, 4(12): 3003-3011
[5]  Tian E G, Yue D, Peng C. Reliable control for networked control systems with probabilistic actuator fault and random delays. Journal of the Franklin Institute, 2010, 347(10): 1907-1926
[6]  Tanaka K, Wang H. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: John Wiley, 2001. 49-62
[7]  Zhang H G, Yang D D, Chai T Y. Guaranteed cost networked control for T-S fuzzy systems with time delays. IEEE Transactions on Systems, Man, Cybernetics, Part C: Applications and Reviews, 2007, 37(2): 160-172
[8]  Jiang X F, Han Q L. On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Transactions on Fuzzy Systems, 2008, 16(4): 1050-1060
[9]  Montagner V F, Oliveira R C L F, Peres P L D. Necessary and sufficient LMI conditions to compute quadratically stabilizing state feedback controllers for Takagi-Sugeno systems. In: Proceedings of the 2007 American Control Conference. New York, USA: IEEE, 2007. 4059-4064
[10]  Sala A, Ari no C. Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya's theorem. Fuzzy Sets and Systems, 2007, 158(24): 2671-2686
[11]  Ding B C. Improving the asymptotically necessary and sufficient conditions for stability of fuzzy control. Fuzzy Sets and Systems, 2010, 161(21): 2793-2794
[12]  Fridman E, Seuret A, Richard J P. Robust sampled-data stabilization of linear systems: an input delay approach. Automatica, 2004, 40(8): 1441-1446
[13]  Wu M, He Y, She J H, Liu G P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40(8): 1435-1439
[14]  Han Q L. A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica, 2009, 45(2): 517-524
[15]  Zhao Y , Gao H J, Lam J, Du B Z. Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 750-762
[16]  Zhu X L, Yang G H. New results of stability analysis for systems with time-varying delay. International Journal of Robust and Nonlinear Control, 2010, 20(5): 596-606
[17]  Shao H Y. New delay-dependent stability criteria for systems with interval delay. Automatica, 2009, 45(3): 744-749
[18]  Park P, Ko J W, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47(1): 235-238
[19]  Peng C, Tian Y C. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. Journal of Computational and Applied Mathematics, 2008, 214(2): 480-494
[20]  Jiang X F, Han Q L, Liu S R, Xue A K. A new H_∈fty stabilization criterion for networked control systems. IEEE Transactions on Automatic Control, 2008, 53(4): 1025-1032
[21]  Chen B, Liu X P. Reliable control design of fuzzy dynamic systems with time-varying delay. Fuzzy Sets and Systems, 2004, 146(3): 349-374
[22]  Ghaoui E L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 1997, 42(8): 1171-1176

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133