全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

针对生物振荡网络分析的周期系统目标敏感性方法研究

DOI: 10.3724/SP.J.1004.2012.01065, PP. 1065-1073

Keywords: 敏感性分析,周期系统,相敏感性,周期敏感性,生物振荡网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

?生物学实验和模型计算结果表明振荡是一种常见的生物学现象,越来越多的研究人员关注生物系统内部的振荡现象是如何产生的、引起振荡的关键因素是什么等问题.敏感性分析定量分析系统行为在模型参数、系统输入或者初始条件发生变化时受影响的程度.对周期系统进行传统的状态敏感性计算时,得到的灵敏度指标随着时间的增加而发散,因而对其进行敏感性分析是一项具有挑战性的工作.本文针对这类系统,首先提出基本状态敏感性的概念,由此进一步推导出一种相敏感性分析方法.在计算周期灵敏度过程中,提出了一种基于奇异值分解的的改进算法,简化了基本状态灵敏度的计算.本文中的目标敏感性分析方法克服了因累积效应引起的发散问题.通过对一个生物节律模型和一个复杂的信号转导网络系统模型进行敏感性分析,可以看到改进的周期灵敏度计算方法得到的结果与已有方法一致,并且新提出的目标敏感性分析方法及其计算在处理存在反应守恒的复杂生物振荡系统分析时是有效的.

References

[1]  Goldbeter A. A model for circadian oscillations in the Drosophila period protein (PER). Proceedings of the Royal Society B: Biological Sciences, 1995, 261(1362): 319-324
[2]  Kruse K, Julicher F. Oscillations in cell biology. Current Opinion in Cell Biology, 2005, 17(1): 20-26
[3]  Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems Biology in Practice: Concepts, Implementation and Application. Weinheim: Wiley-VCH, 2005
[4]  Varma A, Morbidelli M, Wu H. Parametric Sensitivity in Chemical Systems. Cambridge: Cambridge University Press, 1999
[5]  Larter R. Sensitivity analysis of autonomous oscillators. Separation of secular terms and determination of structural stability. The Journal of Physical Chemistry, 1983, 87(16): 3114-3121
[6]  Ingalls B P. Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. IEE Proceedings--System Biology, 2004, 1(1): 62-70
[7]  Wilkins A K, Tidor B, White J, Barton P I. Sensitivity analysis for oscillating dynamical systems. SIAM Journal on Scientific Computing, 2009, 31(4): 2706-2732
[8]  Taylor S R, Gunawan R, Petzold L R, Doyle III F J. Sensitivity measures for oscillating systems: application to mammalian circadian gene network. IEEE Transactions on Automatic Control, 2008, 53(1): 177-188
[9]  Zak D E, Stelling J, Doyle III F J. Sensitivity analysis of oscillatory (bio) chemical systems. Computers and Chemical Engineering, 2005, 29(3): 663-673
[10]  Lu B Y, Yue H. Sensitivity analysis of oscillatory biological systems with a SVD-based algorithm. Systemics and Informatics World Network, 2010, 10: 37-47
[11]  Stelling J, Gilles E D, Doyle III F J. Robustness properties of circadian clock architectures. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(36): 13210-13215
[12]  Hoffmann A, Levchenko A, Scott M L, Baltimore D. The Iκ B-NF-κ B signaling module: temporal control and selective gene activation. Science, 2002, 298(5596): 1241-1245
[13]  Lu Bao-Yun, Yue Hong. A systematic approach in analyzing sustained oscillations in an NF-κ B signal transduction pathway system. Acta Biophysica Sinica, 2010, 26(5): 406-420 (in Chinese)
[14]  Kearns J D, Basak S, Werner S L, Huang C S, Hoffmann A. Iκ Bε provides negative feedback to control NF-κ B oscillations, signaling dynamics, and inflammatory gene expression. Journal of Cell Biology, 2006, 173(5): 659-664
[15]  Goldbeter A. Biochemical Oscillations and Cellular Rhythms: the Molecular Bases of Periodic and Chaotic Behaviour. Cambridge: Cambridge University Press, 1996
[16]  Edery I. Circadian rhythms in a nutshell. Physiological Genomics, 2000, 3(2): 59-74
[17]  Mirsky H, Stelling J, Gunawan R, Bagheri N, Taylor S R, Kwei E, Shoemaker J E, Doyle III F J. Automatic control in systems biology. Springer Handbook of Automation. New York: Springer, 2009. 1335-1356
[18]  Tomovic R, Vukobratovic M. General Sensitivity Theory. New York: Elsevier, 1972
[19]  Larter R, Rabitz H, Kramer M. Sensitivity analysis of limit cycles with application to the Brusselator. Journal of Chemical Physics, 1984, 80(9): 4120-4128
[20]  Bagheri N, Stelling J, Doyle III F J. Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics, 2007, 23(3): 358-364
[21]  Nikolaev E V, Atlas J C, Shuler M L. Sensitivity and control analysis of periodically forced reaction networks using the Green's function method. Journal of Theoretical Biology, 2007, 247(3): 442-461
[22]  Gunawan R, Doyle III F J. Isochron-based phase response analysis of circadian rhythms. Biophysical Journal, 2006, 91(6): 2131-2141
[23]  Turanyi T. Sensitivity analysis of complex kinetic systems: tools and applications. Journal of Mathematical Chemistry, 1990, 5(3): 203-248
[24]  Kramer M A, Rabitz H, Calo J M. Sensitivity analysis of oscillatory systems. Applied Mathematical Modelling, 1984, 8(5): 328-340
[25]  Hayden M S, Ghosh S. Shared principles in NF-κ B signaling. Cell, 2008, 132(3): 344-362
[26]  Ashall L, Horton C A, Nelson D E, Paszek P, Harper C V, Sillitoe K, Ryan S, Spiller D G, Unitt J F, Broomhead D S, Kell D B, Rand D A, Sacuteee V, White M R H. Pulsatile stimulation determines timing and specificity of NF-κ B-dependent transcription. Science, 2009, 324(5924): 242-246
[27]  Yue H, Brown M, He F, Jia J, Kell D B. Sensitivity analysis and robust experimental design of a signal transduction pathway system. International Journal of Chemical Kinetics, 2008, 40(11): 730-741

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133