全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

转炉煤气回收系统优化控制策略应用

DOI: 10.3724/SP.J.1004.2012.01017, PP. 1017-1024

Keywords: 煤气回收,炉口压差,模糊径向基函数,CO浓度优化,学习速率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?分析了转炉煤气回收工艺特点以及影响回收效果的重要因素,阐述了实现回收过程运行优化控制的相关工艺参数指标,提出了一种基于提高CO浓度的优化控制方案,利用模糊径向基函数(Radicalbasisfunction,RBF)神经网络在线辨识出炉口压差与CO浓度之间的数学模型,根据辨识模型实时调整压差控制回路设定值,通过控制系统跟踪调整后的设定值,在辨识的过程中改进了网络学习算法,使辨识网络对学习参数变化具有较好的鲁棒性,并易于收敛.在应用此优化控制方法对煤气回收系统进行仿真分析的基础上,投入现场应用,结果表明,此优化控制策略能明显提高煤气回收的质量和品质,达到了良好的实际应用效果.

References

[1]  Yan Ai-Jun, Chai Tian-You, Wang Pu. Intelligently optimizing control of magnetic-tube-recovery-rate (MTRR) based on variable prediction. Control Theory & Applications, 2008, 25(5): 908-912 (严爱军, 柴天佑, 王普. 基于参量预报的磁选管回收率智能优化控制. 控制理论与应用, 2008, 25(5): 908-912)
[2]  Zhang Xing. Study and Design on Smoke Decontaminating and Coal Gas Reclaiming of Steel Making Engineering for 50t Converter at DeSheng I & S(group) Corp [Master dissertation], Chongqing University, China, 2004(张醒. 德钢50t转炉炼钢工程烟气净化及煤气回收监控系统的研究与设计 [硕士学位论文], 重庆大学, 中国, 2004)
[3]  Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515 (柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
[4]  Wu Le, Yang Guo-Hua. New purification and recovery system for steel making converter flue gas. Energy for Metallurgical Industry, 2009, 28(5): 47-50 (武乐, 杨国华. 新型炼钢转炉煤气净化回收系统. 冶金能源, 2009, 28(5): 47-50)
[5]  Wang Ai-Hua, Cai Jiu-Ju, Li Xiu-Ping, Wang Ding, Zhou Qing-An. Converter gas recovery analysis and improvement. Iron and Steel, 2006, 41(5): 81-84(王爱华, 蔡九菊, 郦秀萍, 王鼎, 周庆安. 转炉煤气回收分析及其提高措施. 钢铁, 2006, 41(5): 81-84)
[6]  Song Hai-Ying, Gui Wei-Hua, Yang Chun-Hua, Wang Ya-Lin. Dynamic optimization control for the slag forming process in a Pierce-Smith converter. Control Theory & Applications, 2009, 26(10): 1093-1099(宋海鹰, 桂卫华, 阳春华, 王雅琳. PS转炉造渣过程的动态优化控制. 控制理论与应用, 2009, 26(10): 1093-1099)
[7]  Cheng Li-Liang. Steel-making Converter Flue Gas Recycling Technology. Beijing: Metallurgical Industry Press, 1991. 85-86(成立良. 炼钢转炉烟气的回收利用技术. 北京: 冶金工业出版社, 1991. 85-86)
[8]  Du Yi-Wen. Design and Realization for Fume Cleaning and Recovery System of Converter [Master dissertation], Northeastern University, China, 2005 (杜一文. 转炉烟气净化回收系统的设计与实现 [硕士学位论文], 东北大学, 中国, 2005)
[9]  Chen Zhi-Bin. The current state and development of recovery and utilization technology of domestic converter gas. Metallurgical Power, 2003, (1): 9-12(陈志斌. 国内转炉煤气回收利用技术的现状及发展. 冶金动力, 2003, (1): 9-12)
[10]  Liu Yin-Mian. Application of the micro-differential pressure technology in converter gas recovery. Steel, 1994, 29(5): 60-62 (刘荫绵. 炉口微差压技术在转炉煤气回收中的应用. 钢铁, 1994, 29(5): 60-62)
[11]  Deng Y, He X N, Zhao J, Xiong Y, Shen Y Q, Jiang J. Application of artificial neural network for switching loss modeling in power IGBTs. Journal of Zhejiang University-Science C, 2010, 11(6): 435-443
[12]  Chen Xiao-Qu, Lu Cong-Da, Liao Zhi-Ping. Improvement of BP learning algorithm in Matlab. Control Engineering of China, 2005, 12(S): 96-98(陈孝趋, 鲁聪达, 廖枝平. BP算法的改进及其在Matlab上的实现. 控制工程, 2005, 12(S): 96-98)
[13]  Shenoi B A. Introduction to Digital Signal Processing and Filter Design. USA: John Wiley & Sons, 2006. 112-115
[14]  Guo Peng, Hu Hui, Liu Guo-Rong, Liu Dong-Bo. Adaptive neural-network tracking control for SISO affine nonlinear systems with zero-dynamics. Control Theory & Applications, 2010, 27(8): 1113-1117(郭鹏, 胡慧, 刘国荣, 刘洞波. 具有零动态的SISO仿射非线性系统的神经网络自适应跟踪控制. 控制理论与应用, 2010, 27(8): 1113-1117)
[15]  Qiao Jun-Fei, Han Hong-Gui. Optimal structure design for RBFNN structure. Acta Automatica Sinica, 2010, 36(6): 865-872(乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计. 自动化学报, 2010, 36(6): 865-872)
[16]  Venkatesan P, Anitha S. Application of a radial basis function neural network for diagnosis of diabetes mellitus. Research Articles, 2006, 91(9): 1195-1199
[17]  Bao Hong, Huang Xin-Han, Li Xi-Xiong. Generalized fuzzy inference and generalized fuzzy RBF networks. Control and Decision, 2000, 15(2): 205-208(鲍鸿, 黄心汉, 李锡雄. 广义模糊推理与广义模糊RBF神经网络. 控制与决策, 2000, 15(2): 205-208)
[18]  Wu Yun-Jie, Liu Jin-Kun, Liu Qiang. Servo table robust control based on fuzzy RBF neural network. Journal of System Simulation, 2002, 14(9): 1222-1234(吴云洁, 刘金琨, 刘强. 基于模糊RBF网络的伺服转台鲁棒控制. 系统仿真学报, 2002, 14(9): 1222-1234)
[19]  Liu Jin-Kun. Advanced PID Control and MATLAB Simulation. Beijing: Publishing House of Electronics Industry, 2006. 79-80, 288-299 (刘金琨. 先进PID控制MATLAB仿真. 北京: 电子工业出版社, 2006. 79-80, 288-299)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133