Lu Feng, Duan Ying-Ying, Yuan Wen. Data processing in location-based services. Communication of the China Computer Federation, 2010, 6(6): 38-44 (陆锋, 段滢滢, 袁文. LBS 的数据处理技术. 中国计算机学会通讯, 2010, 6(6): 38-44)
[2]
Guha S, Meyerson A, Mishra N, Motwani R, O'Callaghan L. Clustering data streams: theory and practice. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(3): 515-528
[3]
Han J W, Kamber M. Data Mining Concepts and Techniques. Beijing: China Machine Press, 2006. 196-211
[4]
Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI Press, 1996. 226-231
[5]
Sander J, Ester M, Kriegel H P, Xu X W. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194
[6]
Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York, USA: AAAI Press, 1998. 58-65
[7]
Ma Shuai, Wang Teng-Jiao, Tang Shi-Wei, Yang Dong-Qing, Gao Jun. A fast clustering algorithm based on reference and density. Journal of Software, 2003, 14(6): 1089-1095 (马帅, 王腾蛟, 唐世渭, 杨冬青, 高军. 一种基于参考点和密度的快速聚类算法. 软件学报, 2003, 14(6): 1089-1095)
[8]
Chen Zhuo, Meng Qing-Chun, Wei Zhen-Gang, Ren Li-Jie, Dou Jin-Feng. A fast clustering algorithm based on grid and density condensation point. Journal of Harbin Institute of Technology, 2005, 37(12): 1654-1657 (陈卓, 孟庆春, 魏振刚, 任丽婕, 窦金凤. 一种基于网格和密度凝聚点的快速聚类算法. 哈尔滨工业大学学报, 2005, 37(12): 1654-1657)
[9]
Duan L, Xiong D Y, Lee J, Feng G. A local density based spatial clustering algorithm with noise. In: Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics. Taipei, China: IEEE, 2006. 4061-4066
[10]
Ester M, Kriegel H P, Sander J, Wimmer M, Xu X W. Incremental clustering for mining in a data warehousing environment. In: Proceedings of the 24th Very Large Data Bases (VLDB) Conference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1998. 323-333
[11]
Aggarwal C C, Han J W, Wang J Y, Yu P S. A framework for clustering evolving data streams. In: Proceedings of the 29th Very Large Data Bases (VLDB) Conference. Berlin, USA: VLDB Endowment, 2003. 81-92
[12]
Zhu Wei-Heng, Yin Jian, Xie Yi-Huang. Arbitrary shape cluster algorithm for clustering data stream. Journal of Software, 2006, 17(3): 379-387 (朱蔚恒, 印鉴, 谢益煌. 基于数据流的任意形状聚类算法. 软件学报, 2006, 17(3): 379-387)
[13]
Cao F, Ester M, Qian W N, Zhou A Y. Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM Conference on Data Mining. Bethesda, USA: SIAM Press, 2006. 326-337
[14]
Ren J D, Ma R Q. Density-based data streams clustering over sliding windows. In: Proceedings of the 6th International Conference on Fuzzy systems and Knowledge Discovery. Piscataway, USA: IEEE Press, 2009. 248-252
[15]
Ruiz C, Menasalvas E, Spiliopoulou M. C-DenStream: using domain knowledge on a data stream. In: Proceedings of the 12th International Conference on Discovery Science. Berlin, Heidelberg: Springer-Verlag, 2009. 287-301
[16]
Chen Y X, Tu L. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2007. 133-142
[17]
Thomas Brinko. Network-based Generator of Moving Object [Online], available: http://iapg.jadehs.de/ personen/brinkho?/generator/, April 19, 2005
[18]
Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. Beijing, China: ACM, 2007. 593-604
[19]
MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California Press, 1967. 281-297
[20]
Tu L, Chen Y X. Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 2009, 3(3): 1-27
[21]
Halkidi M, Vazirgiannis M. Clustering validity assessment using multi representatives. In: Proceedings of the 2nd Hellenic Conference on Artificial Intelligence (SETN), SETN 2002. Thessaloniki, New York: Springer, 2002. 237-248