全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非线性时变时滞系统的稳定性分析与吸引域估计

DOI: 10.3724/SP.J.1004.2012.00716, PP. 716-724

Keywords: 时变时滞系统,等价形式,稳定性,吸引域

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对一类非线性时变时滞系统,研究其稳定性和吸引域的估计问题.首先,通过坐标变换和正交分解法,将这类系统转化为一个等价形式.其次,基于正交条件和引入自由权矩阵,给出了这类系统具有较小保守性的稳定性和吸引域估计结果.最后,仿真例子验证了所提出方法的有效性.

References

[1]  Gu K Q, Kharitonov V L, Chen J. Stability of Time-Delay Systems. Berlin: Springer, 2003. 322-323
[2]  Quan Quan, Yang De-Dong, Cai Kai-Yuan. Adaptive compensation for robust tracking of uncertain dynamic delay systems. Acta Automatica Sinica, 2010, 36(8): 1189-1194
[3]  Cong Shen, Zhang Hai-Tao, Zou Yun. A new exponential stability condition for delayed systems with Markovian switching. Acta Automatica Sinica, 2010, 36(7): 1025-1028
[4]  Li Q K, Zhao J, Dimirovski G M, Liu X J. State convergence property of perturbed switched linear time-delay systems. IET Control Theory and Applications, 2010, 4(2): 273-281
[5]  Sun Xin, Zhang Qing-Ling, Yang Chun-Yu, Shao Yong-Yun, Su Zhan. Delay-dependent stability analysis and stabilization of discrete-time singular delay systems. Acta Automatica Sinica, 2010, 36(10): 1477-1483
[6]  Xu S Y, Lam J. Improved delay-dependent stability criteria for time-delay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384-387
[7]  He Y, Wang Q G, Lin C, Wu M. Delay-range-dependent stability for systems with time-varying delay. Automatica, 2007, 43(2): 371-376
[8]  Han Q L. A delay decomposition approach to stability of linear neutral systems. In: Proceedings of the 17th International Federation of Automatic Control (IFAC) World Congress. Seoul, Korea: IEEE, 2008. 2607-2612
[9]  Fu Y S, Tian Z H, Shi S J. Output feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2005, 50(6): 847-851
[10]  Zemouche A, Boutayeb M, Bara G I. On observers design for nonlinear time-delay systems. In: Proceedings of the American Control Conference. Minneapolis, Minnesota, USA: IEEE, 2006. 4025-4030
[11]  Gong Q X, Zhang H G, Song C H, Liu D R. Disturbance decoupling control for a class of nonlinear time-delay system. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China, IEEE: 2006. 878-882
[12]  Yang R M, Wang Y Z. Stability analysis and H∞ control design for a class of nonlinear time-delay systems. Asian Journal of Control, 2012, 14(1): 153-162
[13]  Nguang S K. Robust stabilization of a class of time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(4): 756-762
[14]  Sun W W, Wang Y Z, Yang R M. L2 disturbance attenuation for a class of time-delay Hamiltonian systems. Journal of Systems Science and Complexity, 2011, 24(4): 672-682
[15]  Papachristodoulou A. Analysis of nonlinear time-delay systems using the sum of squares decomposition. In: Proceedings of the American Control Conference. Pasadena CA, USA: IEEE, 2004. 4153-4158
[16]  Coutinho D F, de Souza C E. Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems. Automatica, 2008, 44(8): 2006-2018
[17]  Fridman E, Dambrine M, Yeganefar N. On input-to-state stability of systems with time-delay: a matrix inequalities approach. Automatica, 2008, 44(9): 2364-2369
[18]  Zhang W, Cai X S, Han Z Z. Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. Journal of Computational and Applied Mathematics, 2010, 234(1): 174-180
[19]  Ramakrishnan K, Ray G. Improved stability criteria for lurie type systems with time-varying delay. Acta Automatica Sinica, 2011, 37(5): 639-644
[20]  Lin Jin-Xing, Fei Shu-Min. Robust exponential admissibility of uncertain switched singular time-delay systems. Acta Automatica Sinica, 2010, 36(12): 1773-1779
[21]  Khalil H K. Nonlinear Systems (3rd Edition). USA: Prentice Hall, 2002. 312-322
[22]  Cao J D. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks. Physics Letters A, 2004, 325(5-6): 370-374
[23]  Melchor-Aguilar D, Niculescu S I. Estimates of the attraction region for a class of nonlinear time-delay systems. IMA Journal of Mathematical Control and Information, 2007, 24(4): 523-550
[24]  Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149-154
[25]  Wang Y Z, Li C W, Cheng D Z. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39(8): 1437-1443
[26]  Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994. 23-24
[27]  Lu W M, Doyle J C. Robustness analysis and synthesis for nonlinear uncertain systems. IEEE Transactions on Automatic Control, 1997, 42(12): 1654-1662
[28]  Zhang X P, Tsiotras P, Knospe C. Stability analysis of LPV time-delayed systems. International Journal of Control, 2002, 75(7): 538-558
[29]  Wu F, Grigoriadis K M. LPV systems with parameter-varying time delays: analysis and control. Automatica, 2001, 37(2): 221-229
[30]  Kiriakidis K. Control synthesis for a class of uncertain nonlinear systems. In: Proceedings of the American Control Conference. San Diego, California, USA: IEEE, 1999. 4073-4074

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133