全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人群异常状态检测的图分析方法

DOI: 10.3724/SP.J.1004.2012.00742, PP. 742-750

Keywords: 非参数密度估计,自适应Meanshift,图分析,人群异常检测,动态场景

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出一种图分析方法用于动态人群场景异常状态检测.使用自适应Meanshift算法对场景速度场进行非参数概率密度估计聚类,聚类结果构成以聚类中心为顶点、各聚类中心之间距离为边权重的无向图.通过分析图顶点的空间分布及边权重矩阵动态系统的预测值与观测值之间的离散程度,对动态场景中的异常事件进行检测和定位.使用多个典型动态场景视频数据库进行对比实验,结果表明图分析方法适应性强、可有效监控动态人群场景中的异常状态.

References

[1]  Albiol A, Silla M J, Albiol A, Mossi J M. Video analysis using corner motion statistics. In: Proceedings of 11th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Miami, USA: IEEE, 2009. 31-37
[2]  Srivastava S, Ng K K, Delp E J. Crowd flow estimation using multiple visual features for scenes with changing crowd densities. In: Proceedings of 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance. Klagenfurt, Austria: IEEE, 2011. 60-65
[3]  Chan A B, Vasconcelos N. Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 909-926
[4]  Wu S D, Moore B E, Shah M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 2054-2060
[5]  Helbing D, Molnár P. Social force model for pedestrian dynamics. Physical Review, 1995, 51(5): 4282-4286
[6]  Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 935- 942
[7]  Wang B, Ye M, Li X, Zhao F J, Ding J. Abnormal crowd behavior detection using high-frequency and spatio-temporal features. Machine Vision and Applications (Springer). [Online], available: http://www.springerlink.com/content/ vr38484834416g85/, January 11, 2012
[8]  Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(1-3): 185-203
[9]  Khatri C G, Mardia K V. The von Mises-Fisher matrix distribution in orientation statistics. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 95 -106
[10]  Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
[11]  Martin R J. A metric for ARMA processes. IEEE Transactions on Signal Processing, 2000, 48(4): 1164-1170
[12]  PETS 2009 Benchmark Data [Online], available: http:// www.cvg.rdg.ac.uk/PETS2009/a.html, January 11, 2012
[13]  Mahadevan V, Li W X, Vasconcelos N. UCSD dataset [Online], available: http://www.svcl.ucsd.edu/projects/ anomaly/, January 11, 2012
[14]  UMN dataset [Online], available: http://mha.cs.umn.edu/ Movies/Crowd-Activity-All.avi, January 11, 2012
[15]  Adam A, Rivlin E, Shimshoni I, Reinitz D. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133