Heikkila J, Silven O. A real-time system for monitoring of cyclists and pedestrians. In: Proceedings of the 2nd IEEE Workshop on Visual Surveillance. Fort Collins, USA: IEEE, 1999. 74-81
[2]
Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. In: Proceedings of the 6th European Conference on Computer Vision. Dublin, Ireland: Springer, 2000. 751-767
[3]
Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 246-252
[4]
Wang Yong-Zhong, Liang Yan, Pan Quan, Cheng Yong-Mei, Zhao Chun-Hui. Spatiotemporal background modeling based on adaptive mixture of Gaussians. Acta Automatica Sinica, 2009, 35(4): 371-378(王永忠, 梁彦, 潘泉, 程咏梅, 赵春晖. 基于自适应混合髙斯模型的时空背景建模. 自动化学报, 2009, 35(4): 371-378)
[5]
Chalidabhongse T H, Kim K, Harwood D, Davis L. A perturbation method for evaluating background subtraction algorithms. In: Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Nice, France: IEEE, 2003. 110-116
[6]
Tu Q, Xu Y, Zhou M. Box-based codebook model for realtime objects detection. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 7621-7625
[7]
Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261
[8]
Piccardi M. Background subtraction techniques: a review. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. The Hague, Netherlands: IEEE, 2004. 3099-3104
[9]
Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
[10]
Bouwmans T, Baf F E, Vachon B. Background modeling using mixture of Gaussians for foreground detection—a survey. Recent Patents on Computer Science, 2008, 1(3): 219-237
[11]
Kim K, Chalidabhongse T H, Harwood D, Davis L. Real-time foreground-background segmentation using code book model. Real-Time Imaging, 2005, 11(3): 172-185
[12]
Wu M, Peng X. Spatio-temporal context for codebook-based dynamic background subtraction. AEU-International Journal of Electronics and Communications, 2010, 64(8): 739-747
[13]
Doshi A, Trivedi M. “Hybrid cone-cylinder” codebook model for foreground detection with shadow and highlight suppression. In: Proceedings of the IEEE International Conference on Video and Signal Based Surveillance. Sydney, Australia: IEEE. 2006. 19-24