全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于主成分分析的Codebook背景建模算法

DOI: 10.3724/SP.J.1004.2012.00591, PP. 591-600

Keywords: 混合高斯模型,运动目标检测,Codebook算法,主成分分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?混合高斯(MixtureofGaussian,MOG)背景建模算法和Codebook背景建模算法被广泛应用于监控视频的运动目标检测问题,但混合高斯的球体模型通常假设RGB三个分量是独立的,Codebook的圆柱体模型假设背景像素值在圆柱体内均匀分布且背景亮度值变化方向指向坐标原点,这些假设使得模型对背景的描述能力下降.本文提出了一种椭球体背景模型,该模型克服了混合高斯球体模型和Codebook圆柱体模型假设的局限性,同时利用主成分分析(Principalcomponentsanalysis,PCA)方法来刻画椭球体背景模型,提出了一种基于主成分分析的Codebook背景建模算法.实验表明,本文算法不仅能够更准确地描述背景像素值在RGB空间中的分布特征,而且具有良好的鲁棒性.

References

[1]  Heikkila J, Silven O. A real-time system for monitoring of cyclists and pedestrians. In: Proceedings of the 2nd IEEE Workshop on Visual Surveillance. Fort Collins, USA: IEEE, 1999. 74-81
[2]  Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. In: Proceedings of the 6th European Conference on Computer Vision. Dublin, Ireland: Springer, 2000. 751-767
[3]  Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 246-252
[4]  Wang Yong-Zhong, Liang Yan, Pan Quan, Cheng Yong-Mei, Zhao Chun-Hui. Spatiotemporal background modeling based on adaptive mixture of Gaussians. Acta Automatica Sinica, 2009, 35(4): 371-378(王永忠, 梁彦, 潘泉, 程咏梅, 赵春晖. 基于自适应混合髙斯模型的时空背景建模. 自动化学报, 2009, 35(4): 371-378)
[5]  Chalidabhongse T H, Kim K, Harwood D, Davis L. A perturbation method for evaluating background subtraction algorithms. In: Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Nice, France: IEEE, 2003. 110-116
[6]  Tu Q, Xu Y, Zhou M. Box-based codebook model for realtime objects detection. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 7621-7625
[7]  Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261
[8]  Piccardi M. Background subtraction techniques: a review. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. The Hague, Netherlands: IEEE, 2004. 3099-3104
[9]  Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
[10]  Bouwmans T, Baf F E, Vachon B. Background modeling using mixture of Gaussians for foreground detection—a survey. Recent Patents on Computer Science, 2008, 1(3): 219-237
[11]  Kim K, Chalidabhongse T H, Harwood D, Davis L. Real-time foreground-background segmentation using code book model. Real-Time Imaging, 2005, 11(3): 172-185
[12]  Wu M, Peng X. Spatio-temporal context for codebook-based dynamic background subtraction. AEU-International Journal of Electronics and Communications, 2010, 64(8): 739-747
[13]  Doshi A, Trivedi M. “Hybrid cone-cylinder” codebook model for foreground detection with shadow and highlight suppression. In: Proceedings of the IEEE International Conference on Video and Signal Based Surveillance. Sydney, Australia: IEEE. 2006. 19-24

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133