全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于凸松弛方法的医学B超图像快速分割

DOI: 10.3724/SP.J.1004.2012.00582, PP. 582-590

Keywords: 医学B超,活动轮廓,贝叶斯风险,凸松弛,分裂Bregman

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用活动轮廓线方法进行图像分割的一个重要缺陷是目标函数是非凸的,这不仅使得分割结果容易陷于局部极小,而且还使得一些快速算法无法开展.本文首先从贝叶斯风险估计的方法出发,针对B超幅度图像,给出一种基于Rayleigh分布的活动轮廓线模型.然后结合凸松弛的方法,得到一个新的放松的凸模型.原有模型和放松后模型的关系可由定理1给出.最后结合分裂Bregman算法,给出基于B超分割模型的快速算法.与传统梯度下降法相比较,本文提出的算法不仅能得到全局最优解,而且在算法收敛速度上也大大优于梯度下降法.

References

[1]  Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 2002, 46(3): 223-247
[2]  Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61 -79
[3]  Liu Guo-Cai, Wang Yao-Nan, Duan Xuan-Chu. Knowledge based hierarchical Mumford-Shah model for vector-valued image segmentation. Acta Automatica Sinica, 2009, 35(4): 356-363(刘国才, 王耀南, 段宣初. 基于知识的多层Mumford-Shah向量值图像分割模型. 自动化学报, 2009, 35(4): 356-363)
[4]  Zhong T, Tagare H D, Beaty J D. Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Transactions on Medical Imaging, 2006, 25(11): 1483-1491
[5]  Liu Bo, Huang Jian-Hua, Tang Xiang-Long, Liu Jia-Feng, Zhang Ying-Tao. Combining global probability density difference and local gray level fitting for ultrasound image segmentation. Acta Automatica Sinica, 2010, 36(7): 951-959(刘博, 黄剑华, 唐降龙, 刘家锋, 张英涛. 结合全局概率密度差异与局部灰度拟合的超声图像分割. 自动化学报, 2010, 36(7): 951- 959)
[6]  Li C M, Huang R, Ding Z H, Gatenby J C, Metaxas D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016
[7]  Bresson X, Esedoglu S, Vandergheynst P, Thiran J P, Osher S. Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 2007, 28(2): 151-167
[8]  Nambakhsh M S, Yuan J, Ayed I B, Punithakumar K, Goela A, Islam A, Peters T, Shuo L. A convex max-flow segmentation of LV using subject-specific distributions on cardiac MRI. In: Proceedings of the 22nd International Conference on Information Processing in Medical Imaging. Kloster Irsee, Germany: Springer, 2011. 171-183
[9]  Burckhardt C B. Speckle in ultrasound B-mode scans. IEEE Transactions on Sonics and Ultrasonics, 1978, 25(1): 1-6
[10]  Goldstein T, Osher S. The split Bregman algorithm for L_{1}-regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343
[11]  Setzer S, Steidla G, Teuber T. Deblurring Poissonian images by split Bregman techniques. Journal of Visual Communication and Image Representation, 2010, 21(3): 193-199
[12]  Cai J F, Osher S, Shen Z W. Split Bregman methods and frame based image restoration. Multiscale Modeling and Simulation, 2010, 8(2): 337-370
[13]  Jensen J A, Svendsen N B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(2): 262-267
[14]  Zhu S C, Yuille A L. Region competition: unifying snakes, region growing and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9): 884-900
[15]  Kass M, Witkin A P, Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331
[16]  Mumford D, Shah J. Optical approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-684
[17]  Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277
[18]  Sarti A, Corsi C, Mazzini E, Lamberti C. Maximum likelihood segmentation of ultrasound images with Rayleigh distribution. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52(6): 947-960
[19]  Han Shou-Dong, Zhao Yong, Tao Wen-Bing, Sang Nong. Gaussian super-pixel based fast image segmentation using graph cuts. Acta Automatica Sinica, 2011, 37(1): 11-20(韩守东, 赵勇, 陶文兵, 桑农. 基于高斯超像素的快速Graph Cuts图像分割方法. 自动化学报, 2011, 37(1): 11-20)
[20]  Nikolova M, Esedoglu S, Chan T F. Algorithms for finding global minimizers of image segmentation and denosing models. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632-1648
[21]  Goldstein T, Bresson X, Osher S. Geometric applications of split Bregman method: segmentation and surface reconstruction. Journal of Scientific Computing, 2009, 45(1-3): 272-293
[22]  Wanger R F, Smith S W, Sandrik J M, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Transactions on Sonics and Ultrasonics, 1983, 30(3): 156-163
[23]  Casella G, Berger R L. Statistical Inference. California: Wadsworth, 1990. 373-413
[24]  Osher S, Burger M, Goldfarb D, Xu J J, Yin W T. An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation, 2005, 4(2): 460-489
[25]  Setzer S. Operator splittings, Bregman methods and frame shrinkage in image processing. International Journal of Computer Vision, 2011, 92(3): 265-280
[26]  Jensen J A. Field: a program for simulating ultrasound systems. Medical and Biological Engineering and Computing, 1996, 34(S1): 351-353

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133