Felzenszwalb P, Girshick R, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645
[2]
Felzenszwalb P, Girshick R, McAllester D. Cascade object detection with deformable part models. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2241-2248
[3]
Blaschko M, Lampert C. Learning to localize objects with structured output regression. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 2-15
[4]
Awasthi P, Gagrani A, Ravindran B. Image modeling using tree structured conditional random fields. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India: Morgan Kaufmann Publishers, 2007. 2060-2065
[5]
Plath N, Toussaint M, Nakajima S. Multi-class image segmentation using conditional random fields and global classification. In: Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada: ACM, 2009. 817-824
[6]
Everingham M, Van Gool L, Williams C, Winn J, Zisserman A. The PASCAL visual object classes challenge 2007 (VOC2007) results [Online], available: http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html, January 6, 2012
[7]
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
[8]
Felzenszwalb P, Huttenlocher D. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 167-181
[9]
Rowley H, Baluja S, Kanade T. Human face detection in visual scenes. In: Proceedings of the Neural Information Processing Systems. Denver, USA: the MIT Press, 1995. 875-881
[10]
Ferrari V, Fevrier L, Jurie F, Schmid C. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36-51
[11]
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893
[12]
Desai C, Ramanan D, Fowlkes C. Discriminative models for multi-class object layout. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 229-236
[13]
Lampert C, Blaschko M, Hofmann T. Beyond sliding windows: object localization by efficient subwindow search. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2010. 1-8
[14]
Reynolds J, Murphy K. Figure-ground segmentation using a hierarchical conditional random field. In: Proceedings of the 4th Canadian Conference on Computer and Robot Vision. Montreal, Canada: IEEE, 2007. 175-182
[15]
Russell B, Freeman W, Efros A, Sivic J, Zisserman A. Using multiple segmentations to discover objects and their extent in image collections. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1605-1614
[16]
Felzenszwalb P, Huttenlocher D. Distance Transforms of Sampled Functions, Technical Report TR-2004-1963, Department of Computer Science, Cornell University, USA, 2004
[17]
Felzenszwalb P, Huttenlocher D. Pictorial structures for object recognition. International Journal of Computer Vision, 2005, 61(1): 55-79
[18]
Tsochantaridis I, Hofmann T, Joachims T, Altun Y. Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the 21st International Conference on Machine Learning. Alberta, Canada: ACM, 2004. 1-8