全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解混合流水车间调度问题的分布估计算法

DOI: 10.3724/SP.J.1004.2012.00437, PP. 437-443

Keywords: 混合流水车间调度,分布估计算法,概率模型,实验设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对混合流水车间调度问题(Hybridflow-shopschedulingproblem,HFSP)的特点,设计了基于排列的编码和解码方法,建立了描述问题解空间的概率模型,进而提出了一种有效的分布估计算法(Estimationofdistributionalgorithm,EDA).该算法基于概率模型通过采样产生新个体,并基于优势种群更新概率模型的参数.同时,通过实验设计方法对算法参数设置进行了分析并确定了有效的参数组合.最后,通过基于实例的数值仿真以及与已有算法的比较验证了所提算法的有效性和鲁棒性.

References

[1]  Wang Ling, Zhou Gang, Xu Ye, Jin Yi-Hui. Advances in the study on hybrid flow-shop scheduling. Control and Instrument in Chemical Industry, 2011, 38(1): 1-8(王凌, 周刚, 许烨, 金以慧. 混合流水线调度研究进展. 化工自动化及仪表, 2011, 38(1): 1-8)
[2]  Portmann M C, Vignier A, Dardilhac D, Dezalay D. Branch and bound crossed with GA to solve hybrid flowshops. European Journal of Operational Research, 1998, 107(2): 389-400
[3]  Soewandi H, Elmaghraby S E. Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transactions, 2003, 35(5): 467-477
[4]  Xuan Hua, Tang Li-Xin. Lagrangian relaxation algorithm for real-time hybrid flow-shop scheduling with no-wait in process. Control and Decision, 2006, 21(4): 376-380(轩华, 唐立新. 实时无等待HFS调度的一种拉格朗日松弛算法. 控制与决策, 2006, 21(4): 376-380)
[5]  Zhou Hui-Ren, Tang Wan-Sheng, Wei Ying-Hui. Optimize flexible flow-shop scheduling using genetic algorithm. Computer Engineering and Applications, 2009, 45(30): 224-226(周辉仁, 唐万生, 魏颖辉. 柔性Flow-Shop调度的遗传算法优化. 计算机工程与应用, 2009, 45(30): 224-226)
[6]  Wang X, Tang L. A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers. Computers and Operations Research, 2009, 36(3): 907-918
[7]  Tseng C T, Liao C J. A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks. International Journal of Production Research, 2008, 46(17): 4655-4670
[8]  Xu Y, Wang L, Zhou G, Wang S Y. An effective shuffled frog leaping algorithm for solving hybrid flow-shop scheduling problem. In: Proceedings of the International Conference on Intelligent Computing. Zhengzhou, China: Springer, 2011. 560-567
[9]  Baluja S. Population-Based Incremental Learning: a Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, Technical Report CMU-CS-94-163, Computer Science Department, Carnegie Mellon University, USA, 1994
[10]  Brah S A, Luan L L. Heuristics for scheduling in a flow shop with multiple processors. European Journal of Operational Research, 1999, 113(1): 113-122
[11]  Montgomery D C. Design and Analysis of Experiments (Sixth Edition). Hoboken: John Wiley and Sons, 2005
[12]  Wang Ling. Shop Scheduling with Genetic Algorithms. Beijing: Tsinghua University Press, 2003. 138-145(王凌. 车间调度及其遗传算法. 北京: 清华大学出版社, 2003. 138-145)
[13]  Hoogeveen J A, Lenstra J K, Veltman B. Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard. European Journal of Operational Research, 1996, 89(1): 172-175
[14]  Figielska E. A genetic algorithm and a simulated annealing algorithm combined with column generation technique for solving the problem of scheduling in the hybrid flowshop with additional resources. Computers and Industrial Engineering, 2009, 56(1): 142-151
[15]  Riane F, Artiba A, Elmaghraby S E. Sequencing a hybrid two-stage flowshop with dedicated machines. International Journal of Production Research, 2002, 40(17): 4353-4380
[16]  Low C. Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Computers and Operations Research, 2005, 32(8): 2013-2025
[17]  Alaykyran K, Engin O, Doyen A. Using ant colony optimization to solve hybrid flow shop scheduling problems. The International Journal of Advanced Manufacturing Technology, 2007, 35(5-6): 541-550
[18]  Liu F, Zhang X P, Zou F X, Zeng L L. Immune clonal selection algorithm for hybrid flow-shop scheduling problem. In: Proceedings of the Chinese Control and Decision Conference. Guilin, China: IEEE, 2009. 2605-2609
[19]  Muhlenbein H, Paass G. From recombination of genes to the estimation of distributions I. binary parameters. In: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature. Berlin, Germany: Springer, 1996. 178-187
[20]  Zhou Shu-De, Sun Zeng-Qi. A survey on estimation of distribution algorithms. Acta Automatica Sinica, 2007, 33(2): 113-124(周树德, 孙增圻. 分布估计算法综述. 自动化学报, 2007, 33(2): 113-124)
[21]  Cui Jian-Shuang, Li Tie-Ke, Zhang Wen-Xin. Hybrid flowshop scheduling model and its genetic algorithm. Journal of University of Science and Technology Beijing, 2005, 27(5): 623-626(崔建双, 李铁克, 张文新. 混合流水车间调度模型及其遗传算法. 北京科技大学学报, 2005, 27(5): 623-626)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133