全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类不确定热方程自适应边界控制

DOI: 10.3724/SP.J.1004.2012.00469, PP. 469-472

Keywords: 自适应镇定,不确定控制系数,边界扰动,边界控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了一类含有不确定控制系数和边界扰动的热方程自适应状态反馈边界控制设计问题.通过Lyapunov方法,显式地得到了仅需系统边界状态信息的自适应控制器.证明了闭环系统状态是L2[0,1]稳定的,特别是当边界扰动消逝时,该状态收敛到0.此外,通过灵活选取参数调节律的初始条件,适当放宽了相关文献中相容性条件对系统初始条件的限制.仿真算例验证了本文方法的有效性.

References

[1]  Triggiani R. Boundary feedback stabilizability of parabolic equations. Applied Mathematics and Optimization, 1980, 6(1): 201-220
[2]  Lasiecka I, Triggiani R. Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge: Cambridge University Press, 2000
[3]  Liu W J. Boundary feedback stabilization of an unstable heat equation. SIAM Journal on Control and Optimization, 2004, 42(3): 1033-1043
[4]  Krstic M, Smyshlyaev A. Adaptive boundary control for unstable parabolic PDEs-Part I: Lyapunov design. IEEE Transactions on Automatic Control, 2008, 53(7): 1575-1591
[5]  Liu W J, Krstic M. Adaptive control of Burgers' equation with unknown viscosity. International Journal of Adaptive Control and Signal Processing, 2001, 15(7): 745-766
[6]  Fard M P, Sagatun S I. Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov's direct method. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(2): 195-200
[7]  Krstic M. On global stabilization of Burgers' equation by boundary control. Systems and Control Letters, 1999, 37(3): 123-141
[8]  Kim J U, Renardy Y. Boundary control of the Timoshenko beam. SIAM Journal on Control and Optimization, 1987, 25(6): 1417-1429
[9]  Boskovic D M, Krstic M, Liu W J. Boundary control of an unstable heat equation via measurement of domain-averaged temperature. IEEE Transactions on Automatic Control, 2001, 46(12): 2022-2028
[10]  Smyshlyaev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Transactions on Automatic Control, 2004, 49(12): 2185-2202
[11]  Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs-Part II: estimation-based designs. Automatica, 2007, 43(9): 1543-1556
[12]  Nguyen Q C, Hong K S. Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. Journal of Sound and Vibration, 2010, 329(22): 4588-4603
[13]  Queiroz M S, Dawson D M, Nagarkatti S P, Zhang F M. Lyapunov-Based Control of Mechanical Systems. Boston: Birkhauser, 2000
[14]  Yang W Y, Cao W, Chung T S, Morris J. Applied Numerical Methods Using MATLAB. New Jersey: John Wiley and Sons, 2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133