全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

区间分数阶系统的鲁棒稳定性判别准则:0<α<1

DOI: 10.3724/SP.J.1004.2012.00175, PP. 175-182

Keywords: 分数阶系统,区间不确定性,鲁棒稳定性,值集

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对同元阶次在0和1之间的区间分数阶系统,提出了类似Kharitonov定理的鲁棒稳定性判别准则.研究了区间分数阶系统分母的主分支函数值集不包含原点所需满足的条件.根据除零原理,给出了区间分数阶系统鲁棒稳定的顶点和棱边条件.定义了由分母函数系数构成的矩阵,通过检验矩阵是否在负实轴上存在特征值来检验棱边条件.最后,通过对两个数值算例的分析说明了这种方法的有效性.

References

[1]  Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153
[2]  Valerio D, Costa J S. Time-domain implementation of fractional order controllers. IEE Proceedings -- Control Theory and Applications, 2005, 152(5): 539-552
[3]  Merrikh-Bayat F, Karimi-Ghartemani M. Method for designing PI^{λ }D^{μ } stabilisers for minimum-phase fractional-order systems. IET Control Theory and Applications, 2010, 4(1): 61-70
[4]  Jelicic Z D, Petrovacki N. Optimality conditions and a solution scheme for fractional optimal control problems. Structural and Multidisciplinary Optimization, 2009, 38(6): 571-581
[5]  Tavazoei M S, Haeri M. A note on the stability of fractional order systems. Mathematics and Computers in Simulation, 2009, 79(5): 1566-1576
[6]  Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Transactions on Automatic Control, 54(6): 1294-1299
[7]  Radwan A G, Soliman A M, Elwakil A S, Sedeek A. On the stability of linear systems with fractional-order elements. Chaos Solition and Fractals, 2009, 40(5): 2317-2328
[8]  Auba T, Funahashi Y. A note on Kharitonov's theorem. IEEE Transactions on Automatic Control, 1993, 38(4): 663-664
[9]  Moornani K A, Haeri M. Robust stability testing function and Kharitonov-like theorem for fractional order interval systems. IET Control Theory and Applications, 2010, 4(10): 2097-2109
[10]  Jesus I S, Machado J A T. Fractional control of heat diffusion systems. Nonlinear Dynamics, 2008, 54(3): 263-282
[11]  Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 2009, 17(12): 1380-1387
[12]  Pisano A, Rapaic M R, Jelicic Z D, Usai E. Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. International Journal of Robust Nonlinear Control, 2010, 20(18): 2045-2056
[13]  Li Y, Chen Y Q, Ahn H S. Fractional-order iterative learning control for fractional-order linear systems. Asian Journal of Control, 2011, 13(1): 54-63
[14]  Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α : the 0<α<1 case. IEEE Transactions on Automatic Control, 2010, 55(1): 152-158
[15]  Liao Z, Peng C, Li W, Wang Y. Robust stability analysis for a class of fractional order systems with uncertain parameters. Journal of the Franklin Institute, 2011, 348(6): 1101-1113
[16]  Wang Zhen-Bin, Cao Guang-Yi, Zhu Xin-Jian. Stability conditions and criteria for fractional order linear time-invariant systems. Control Theory and Applications, 2004, 21(6): 922-926(王振滨, 曹广益, 朱新坚. 分数阶线性定常系统的稳定性及其判据. 控制理论与应用, 2004, 21(6): 922-926)
[17]  Bhattacharyya S P, Chapellat H, Keel L H. Robust Control: the Parametric Approach. New Jersey: Prentice Hall, 1995. 37-39

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133